Molecular and genotypic characterization of human thyroid follicular cell carcinoma-derived cell lines

Thyroid. 2007 Aug;17(8):707-15. doi: 10.1089/thy.2007.0097.

Abstract

Objective: Our aim was to characterize the molecular and genotypic profile of eight thyroid carcinoma-derived cell lines-TPC1, FB2, B-CPAP, K1, XTC-1, C643, 8505C, and Hth74-in order to use them as in vitro models of thyroid carcinogenesis.

Design: We evaluated the expression of five thyroid-specific genes (Tg, TSHr, TPO, PAX8, and TTF-1) to establish the cell lineage and to assess the differentiation status of each of the cell lines. We screened for mutations in the most relevant oncogenes/tumor suppressor genes affected in thyroid carcinogenesis: RAS, BRAF, CTNNB1, and TP53 along with RET/PTC rearrangements. Considering the putative relevance in general carcinogenesis, we have also studied other molecules such as EGFR, PI3K, RAF-1, and THRB. To determine the genetic identity of the cell lines, we performed genotypic analysis.

Main outcome: The panel of cell lines we have studied displayed activation of several oncogenes (BRAF, RAS, RET/PTC) and inactivation of tumor suppressor genes (TP53) known to be important for thyroid carcinogenesis. Two of the cell lines-TPC1 and FB2-shared the same genotypic profile, probably representing clones of an ancestor cell line (TPC1).

Conclusion: Due to their different molecular alterations, these cell lines represent a valuable tool to study the molecular mechanisms underlying thyroid carcinogenesis. We suggest that genotypic analyses should be included as a routine procedure to guarantee the uniqueness of each cell line used in research.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma, Follicular / genetics*
  • Adenocarcinoma, Follicular / pathology
  • Adenocarcinoma, Papillary / genetics
  • Adenocarcinoma, Papillary / pathology
  • Cell Differentiation / genetics
  • Cell Line, Tumor
  • DNA Mutational Analysis
  • Gene Expression Profiling*
  • Gene Expression Regulation, Neoplastic*
  • Genotype
  • Humans
  • Microsatellite Repeats
  • Thyroid Neoplasms / genetics*
  • Thyroid Neoplasms / pathology