Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines

Br J Cancer. 2007 Oct 22;97(8):1116-23. doi: 10.1038/sj.bjc.6604000. Epub 2007 Sep 25.

Abstract

Manganese superoxide dismutase (SOD2) is an enzyme that catalyses the dismutation of superoxide in the mitochondria, leading to reduced levels of reactive oxygen species. Reduced expression levels of SOD2 have been shown to result in increased DNA damage and sod2 heterozygous mice have increased incidences of cancer. It has also been shown that SOD2 expression is lost in pancreatic cell lines, with reintroduction of SOD2 resulting in decreased rate of proliferation. The mechanism of decreased SOD2 expression in pancreatic carcinoma has not been previously determined. We demonstrate, through sodium bisulphite sequencing, that the sod2 locus is methylated in some pancreatic cell lines leading to a corresponding decrease in SOD2 expression. Methylation can be reversed by treatment with zebularine, a methyltransferase inhibitor, resulting in restored SOD2 expression. Furthermore, we demonstrate that sensitivity of pancreatic carcinoma cell lines to 2-methoxyestradiol correlates with SOD2 expression and SOD2 modulation can alter the sensitivity of these cells. Using both genomics and proteomics, we also identify molecular consequences of SOD2 expression in MIA-PaCa2 cells, including dephosphorylation of VEGFR2 and the identification of both SOD2-regulated genes and transcription factors with altered binding activity in response to SOD2 expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • 2-Methoxyestradiol
  • Animals
  • Carcinoma / enzymology*
  • Carcinoma / genetics
  • Cell Line, Tumor
  • DNA Methylation
  • Epigenesis, Genetic*
  • Estradiol / analogs & derivatives
  • Estradiol / pharmacology
  • Gene Expression
  • Gene Expression Profiling
  • Gene Expression Regulation, Enzymologic*
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • Oxidative Stress / physiology
  • Pancreatic Neoplasms / enzymology*
  • Pancreatic Neoplasms / genetics
  • Promoter Regions, Genetic / genetics
  • Reverse Transcriptase Polymerase Chain Reaction
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism*
  • Tubulin Modulators / pharmacology
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • Tubulin Modulators
  • Estradiol
  • 2-Methoxyestradiol
  • Superoxide Dismutase
  • superoxide dismutase 2
  • Vascular Endothelial Growth Factor Receptor-2