Rac1 activity regulates proliferation of aggressive metastatic melanoma

Exp Cell Res. 2007 Nov 1;313(18):3832-9. doi: 10.1016/j.yexcr.2007.08.017. Epub 2007 Aug 28.

Abstract

Molecular mechanisms underlying the different capacity of two in vivo selected human melanoma cell variants to form experimental metastases were studied. The doubling times of the FEMX-I and FEMX-V cell sublines in vitro were 15 and 25 h, respectively. The invasive capacity of FEMX-I cells was 8-fold higher than FEMX-V cells, and the time to form approximately 10 mm s.c. tumors in nude mice was 21 versus 35 days. FEMX-I displayed a spindle-like formation in vitro, whereas FEMX-V cells had a rounded shape. Hence, we examined known determinants of cell shape and proliferation, the small GTPases. The four studied showed equal expression in both cell types, but Rac1 activity was significantly decreased in FEMX-V cells. Rac1 stimulates NFkappaB, and we found that endogenous NFkappaB activity of FEMX-V cells was 2% of that of FEMX-I cells. Inhibition of Rac1 resulted in blocked NFkappaB activity. Specific inhibition of either Rac1 or NFkappaB significantly reduced proliferation and invasion of FEMX-I cells, the more pronounced effects observed with Rac1 inhibition. These data indicate that Rac1 activity in FEMX cells regulates cell proliferation and invasion, in part via its effect on NFkappaB, signifying Rac1 as a key molecule in melanoma progression and metastasis.

MeSH terms

  • Animals
  • Cell Proliferation
  • Enzyme Activation
  • Humans
  • Melanoma / pathology*
  • Mice
  • Mice, Nude
  • NF-kappa B / metabolism
  • Neoplasm Metastasis
  • Tumor Cells, Cultured
  • rac1 GTP-Binding Protein / metabolism*

Substances

  • NF-kappa B
  • rac1 GTP-Binding Protein