Protein kinase A and mitogen-activated protein kinase pathways mediate cAMP induction of alpha-epithelial Na+ channels (alpha-ENaC)

J Cell Physiol. 2008 Apr;215(1):101-10. doi: 10.1002/jcp.21291.

Abstract

A major mechanism for Na+ transport across epithelia occurs through epithelial Na+ channels (ENaC). ENaC is a multimeric channel consisting of three subunits (alpha, beta, and gamma). The alpha-subunit is critical for ENaC function. In specific culture conditions, the rat submandibular gland epithelial cell line (SMG-C6) demonstrates minimal Na+ transport properties and exposure to dibutyryl cAMP (DbcAMP) for up to 48 h caused an elevation of alpha-ENaC mRNA and protein expression and amiloride-sensitive short-circuit current (I(SC)). Here we examined the early signaling pathways evoked by DbcAMP which contribute to the eventual increase in Na+ transport is present. Treatment with either of the protein kinase A (PKA) inhibitors KT5720 or H-89 followed by exposure to 1 mM DbcAMP for 24 h markedly attenuated DbcAMP-induced alpha-ENaC protein formation and I(SC). Exposure of SMG-C6 cells to 1 mM DbcAMP induced a rapid, transient phosphorylation of the cAMP response element binding protein (CREB). This response was attenuated in the presence of either KT5720 or H-89. Dominant-negative CREB decreased DbcAMP-induced alpha-ENaC expression. Suppression of the extracellular signal-regulated protein kinase (ERK 1,2) with PD98059 or the p38 mitogen-activated protein kinase (MAPK) pathway with SB203580 reduced DbcAMP-induced alpha-ENaC protein levels in SMG-C6 cells. DbcAMP-induced phosphorylation of CREB was markedly attenuated by PD98059 or SB203580. DbcAMP-induced activation of the either the p38 or the ERK 1,2 MAPK pathways was abolished by either of the PKA inhibitors, H-89 or KT5720. Cross talk between these signaling pathways induced by DbcAMP via the activation of CREB appears to contribute to increased levels of alpha-ENaC observed after 24 h of treatment in SMG-C6 epithelial cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bucladesine / pharmacology
  • Cell Line
  • Cyclic AMP / pharmacology*
  • Cyclic AMP Response Element-Binding Protein / metabolism
  • Cyclic AMP-Dependent Protein Kinases / antagonists & inhibitors
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Enzyme Activation / drug effects
  • Epithelial Cells / drug effects
  • Epithelial Cells / enzymology
  • Epithelial Sodium Channels / genetics
  • Epithelial Sodium Channels / metabolism*
  • Gene Expression Regulation / drug effects
  • Humans
  • Ion Channel Gating / drug effects
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Mitogen-Activated Protein Kinases / metabolism*
  • Phosphorylation / drug effects
  • Protein Kinase Inhibitors / pharmacology
  • RNA Stability / drug effects
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Rats
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Cyclic AMP Response Element-Binding Protein
  • Epithelial Sodium Channels
  • Protein Kinase Inhibitors
  • RNA, Messenger
  • Bucladesine
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases