Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes

J Clin Oncol. 2007 Nov 20;25(33):5187-93. doi: 10.1200/JCO.2007.12.2705.

Abstract

Purpose: The clinical outcome of tamoxifen-treated breast cancer patients may be influenced by the activity of cytochrome P450 enzymes that catalyze the formation of antiestrogenic metabolites endoxifen and 4-hydroxytamoxifen. We investigated the predictive value of genetic variants of CYP2D6, CYP2C19, and three other cytochrome P450 enzymes for tamoxifen treatment outcome.

Patients and methods: DNA from 206 patients receiving adjuvant tamoxifen monotherapy and from 280 patients not receiving tamoxifen therapy (71 months median follow-up) was isolated from archival material and was genotyped for 16 polymorphisms of CYP2D6, CYP2C19, CYP2B6, CYP2C9, and CYP3A5 by matrix-assisted, laser desorption/ionization, time-of-flight mass spectrometry, and by copy number quantification. Risk and survival estimates were calculated using logistic regression, Kaplan-Meier, and Cox regression analyses.

Results: Tamoxifen-treated patients carrying the CYP2D6 alleles *4, *5, *10, *41-all associated with impaired formation of antiestrogenic metabolites-had significantly more recurrences of breast cancer, shorter relapse-free periods (hazard ratio [HR], 2.24; 95% CI, 1.16 to 4.33; P = .02), and worse event-free survival rates (HR, 1.89; 95% CI, 1.10 to 3.25; P = .02) compared with carriers of functional alleles. Patients with the CYP2C19 high enzyme activity promoter variant *17 had a more favorable clinical outcome (HR, 0.45; 95% CI, 0.21 to 0.92; P = .03) than carriers of *1, *2, and *3 alleles.

Conclusion: Because genetically determined, impaired tamoxifen metabolism results in worse treatment outcomes, genotyping for CYP2D6 alleles *4, *5, *10, and *41 can identify patients who will have little benefit from adjuvant tamoxifen therapy. In addition to functional CYP2D6 alleles, the CYP2C19 *17 variant identifies patients likely to benefit from tamoxifen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Aryl Hydrocarbon Hydroxylases / genetics*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / mortality
  • Cytochrome P-450 CYP2C19
  • Cytochrome P-450 CYP2D6 / genetics*
  • Estrogen Antagonists / therapeutic use*
  • Female
  • Gene Frequency
  • Genotype
  • Humans
  • Middle Aged
  • Mixed Function Oxygenases / genetics*
  • Pharmacogenetics
  • Tamoxifen / metabolism
  • Tamoxifen / therapeutic use*

Substances

  • Estrogen Antagonists
  • Tamoxifen
  • Mixed Function Oxygenases
  • Aryl Hydrocarbon Hydroxylases
  • CYP2C19 protein, human
  • Cytochrome P-450 CYP2C19
  • Cytochrome P-450 CYP2D6