Molecular mechanisms of cancer

West J Med. 1991 Nov;155(5):505-14.

Abstract

Cancer is caused by specific DNA damage. Several common mechanisms that cause DNA damage result in specific malignant disorders: First, proto-oncogenes can be activated by translocations. For example, translocation of the c-myc proto-oncogene from chromosome 8 to one of the immunoglobulin loci on chromosomes 2, 14, or 22 results in Burkitt's lymphomas. Translocation of the c-abl proto-oncogene from chromosome 9 to the BCR gene located on chromosome 22 produces a hybrid BCR/ABL protein resulting in chronic myelogenous leukemia. Second, proto-oncogenes can be activated by point mutations. For example, point mutations of genes coding for guanosine triphosphate-binding proteins, such as H-, K-, or N-ras or G proteins, can be oncogenic as noted in a large variety of malignant neoplasms. Proteins from these mutated genes are constitutively active rather than being faithful second messengers of periodic extracellular signals. Third, mutations that inactivate a gene can result in tumors if the product of the gene normally constrains cellular proliferation. Functional loss of these "tumor suppressor genes" is found in many tumors such as colon and lung cancers. The diagnosis, classification, and treatment of cancers will be greatly enhanced by understanding their abnormalities at the molecular level.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Cell Transformation, Neoplastic / genetics
  • Chromosome Aberrations
  • Chromosome Disorders
  • GTP-Binding Proteins / genetics
  • Genes, Tumor Suppressor
  • Humans
  • Neoplasms / genetics*
  • Proto-Oncogene Mas

Substances

  • MAS1 protein, human
  • Proto-Oncogene Mas
  • GTP-Binding Proteins