Soft tissue sarcoma cells are highly sensitive to AKT blockade: a role for p53-independent up-regulation of GADD45 alpha

Cancer Res. 2008 Apr 15;68(8):2895-903. doi: 10.1158/0008-5472.CAN-07-6268.

Abstract

The AKT signaling pathway is activated in soft tissue sarcoma (STS). However, AKT blockade has not yet been studied as a potential targeted therapeutic approach. Here, we examined the in vitro and in vivo effects of AKT inhibition in STS cells. Western blot analysis was used to evaluate the expression of AKT pathway components and the effect of AKT stimulation and inhibition on their phosphorylation. Cell culture assays were used to assess the effect of AKT blockade (using a phosphatidylinositol 3-kinase inhibitor and a specific AKT inhibitor) on STS cell growth, cell cycle, and apoptosis. Oligoarrays were used to determine gene expression changes in response to AKT inhibition. Reverse transcription-PCR was used for array validation. Specific small inhibitory RNA was used to knockdown GADD45 alpha. Human STS xenografts in nude mice were used for in vivo studies, and immunohistochemistry was used to assess the effect of treatment on GADD45 alpha expression, proliferation, and apoptosis. Multiple STS cell lines expressed activated AKT. AKT inhibition decreased STS downstream target phosphorylation and growth in vitro; G(2) cell cycle arrest and apoptosis were also observed. AKT inhibition induced GADD45 alpha mRNA and protein expression in all STS cells treated independent of p53 mutational status. GADD45 alpha knockdown attenuated the G(2) arrest induced by AKT inhibition. In vivo, AKT inhibition led to decreased STS xenograft growth. AKT plays a critical role in survival and proliferation of STS cells. Modulation of AKT kinase activity may provide a novel molecularly based strategy for STS-targeted therapies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Cell Cycle Proteins / drug effects
  • Cell Cycle Proteins / genetics*
  • Cell Line, Tumor
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Mutation
  • Nuclear Proteins / drug effects
  • Nuclear Proteins / genetics*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-akt / drug effects
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / physiology
  • Rats
  • Sarcoma / genetics
  • Sarcoma / pathology*
  • Signal Transduction
  • Tumor Suppressor Protein p53 / drug effects
  • Tumor Suppressor Protein p53 / genetics*
  • Up-Regulation

Substances

  • Antineoplastic Agents
  • Cell Cycle Proteins
  • GADD45A protein, human
  • Nuclear Proteins
  • Tumor Suppressor Protein p53
  • Proto-Oncogene Proteins c-akt