Human genes in TB infection: their role in immune response

Monaldi Arch Chest Dis. 2008 Mar;69(1):24-31. doi: 10.4081/monaldi.2008.408.

Abstract

Tuberculosis (TB) caused by the human pathogen Mycobacterium tuberculosis, is the leading cause of morbidity and mortality caused by infectious agents worldwide. Recently, there has been an ongoing concern about the clarification of the role of specific human genes and their polymorphisms involved in TB infection. In the vast majority of individuals, innate immune pathways and T-helper 1 (Th1) cell mediated immunity are activated resulting in the lysis of the bacterium. Firstly, PTPN22 R620W polymorphism is involved in the response to cases of infection. The Arg753Gln polymorphism in TLR-2 leads to a weaker response against the M. tuberculosis. The gene of the vitamin D receptor (VDR) has a few polymorphisms (BsmI, ApaI, Taq1, FokI) whose mixed genotypes alter the immune response. Solute carrier family 11 member (SLC11A1) is a proton/divalent cation antiporter that is more familiar by its former name NRAMP1 (natural resistance associated macrophage protein 1) and can affect M. tuberculosis growth. Polymorphisms of cytokines such as IL-10, IL-6, IFN-g, TNF-a, TGF-b1 can affect the immune response in various ways. Finally, a major role is played by M. tuberculosis antigens and the Ras-associated small GTP-ase 33A. As far as we know this is the first review that collates all these polymorphisms in order to give a comprehensive image of the field, which is currently evolving.

Publication types

  • Review

MeSH terms

  • Genetic Predisposition to Disease
  • Humans
  • Tuberculosis / genetics*
  • Tuberculosis / immunology*
  • Tuberculosis / therapy