Effect of human apolipoprotein E genotype on the pathogenesis of experimental ocular HSV-1

Exp Eye Res. 2008 Aug;87(2):122-30. doi: 10.1016/j.exer.2008.05.007. Epub 2008 May 18.

Abstract

The isoform-specific role of human apolipoprotein E (apoE) has been assessed in a mouse model of ocular herpes. Female, age-matched transgenic mice knocked-in for the human allele apoE3 or apoE4 and their parent C57Bl/6 mice were inoculated corneally with HSV-1 strain KOS. Ocular HSV-1 pathogenesis was monitored through viral replication and clinical progression of stromal opacity and neovascularization by slit-lamp examination. Establishment of latency was determined by analysis of HSV-1 DNA (copy number) by specific real-time PCR in the cornea, trigeminal ganglia (TG), and brain. Representative groups of transgenic mice were sacrificed for the analysis of gene expression of vascular endothelial growth factor (VEGF) by reverse-transcription PCR, and apoE expression by Western blot analysis. At 6days post-infection (P.I.), the ocular infectious HSV-1 titer was significantly higher (p<0.05) in apoE4 mice compared with apoE3 and C57Bl/6 mice. Corneal neovascularization in apoE4 mice was significantly higher (p<0.05) than apoE3 and C57Bl/6 mice. The onset of corneal opacity in apoE4 mice was accelerated during days 9-11 P.I.; however, no significant difference in severity was seen on P.I. days 15 and beyond. At 28 days P.I., infected mice of all genotypes had no significant differences in copy numbers (range 0-15) of HSV-1 DNA in their corneas, indicating that HSV-1 DNA copy numbers in cornea are independent of apoE isoform regulation. At 28 days P.I., both apoE4 and C57Bl/6 mice had a significantly higher (p=0.001) number of copies of HSV-1 DNA in TG compared with apoE3. ApoE4 mice also had significantly higher (p=0.001) copies of HSV-1 DNA in their TGs compared with C57Bl/6 mice. In brain, both apoE4 and C57Bl/6 mice had significantly higher numbers (p<or=0.03) of copies of HSV-1 DNA compared with apoE3 mice. However, the number of HSV-1 DNA copies in the brain of C57Bl/6 mice was not significantly different than that of apoE4 (p=0.1). Comparative molecular analysis between apoE3 and apoE4 mice on selected days between 7 and 28 P.I., inclusive, revealed that the corneas of apoE4 mice expressed VEGF. None of the corneas in the apoE3 mice expressed VEGF during this time. Western blot analysis showed proteolytic cleavage of the apoE protein in the corneas of the apoE4 mice. Through days 14-28 P.I., a approximately 29 kDa C-terminal truncated apoE fragment was present in the corneas of apoE4 mice, but not in apoE3 mice. ApoE4 is a risk factor for ocular herpes, in part, through increased replication of virus in the eye, an earlier onset in clinical opacity, significantly higher neovascularization, and increased HSV-1 DNA load in TG and brain than that of apoE3. Increased pathogenesis of ocular herpes in apoE4 mice was also mediated, in part through up-regulated expression of VEGF and apoE proteolysis in the cornea. This is the first report linking a human gene, apoE4, as a risk factor for ocular herpes pathogenesis in a transgenic mouse model.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apolipoproteins E / genetics*
  • Apolipoproteins E / metabolism
  • Corneal Neovascularization / genetics
  • Corneal Neovascularization / metabolism
  • Corneal Neovascularization / virology
  • Corneal Opacity / genetics
  • Corneal Opacity / metabolism
  • Corneal Opacity / virology
  • DNA, Viral / analysis
  • Disease Models, Animal
  • Eye Proteins / genetics
  • Eye Proteins / metabolism
  • Female
  • Genetic Predisposition to Disease
  • Genotype
  • Herpesvirus 1, Human / isolation & purification*
  • Humans
  • Keratitis, Herpetic / genetics*
  • Keratitis, Herpetic / metabolism
  • Keratitis, Herpetic / virology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Reverse Transcriptase Polymerase Chain Reaction / methods
  • Vascular Endothelial Growth Factor A / metabolism
  • Viral Load

Substances

  • Apolipoproteins E
  • DNA, Viral
  • Eye Proteins
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse