Divergent phosphorylation pattern of tau in P301L tau transgenic mice

Eur J Neurosci. 2008 Jul;28(1):137-47. doi: 10.1111/j.1460-9568.2008.06318.x.

Abstract

Aggregates of hyperphosphorylated tau are prominent in brains of patients with Alzheimer's disease or frontotemporal dementia (FTD). They have been reproduced in animal models following the identification of tau mutations in familial cases of FTD. This includes our previously generated transgenic model, pR5, which expresses FTD (P301L) mutant tau in neurons. The mice are characterized by tau aggregation including tangle (NFT) formation, memory impairment and mitochondrial dysfunction. In 8-month-old mice, S422 phosphorylation of tau is linked to NFT formation, however, a detailed analysis of tau solubility, phosphorylation and aggregation has not been done nor have the mice been monitored until a high age. Here, we undertook an analysis by immunohistochemistry, Gallyas impregnation and Western blotting of brains from 3 month- up to 20 month-old mice. NFTs first appeared at 6 months in the amygdala, followed by the CA1 region of the hippocampus. As the mice get older, the solubility of tau is decreased as determined by sequential extractions. Histological analysis revealed increased phosphorylation at the AT180, AT270 and 12E8 epitopes with ageing. The numbers of AT8-positive neurons increased from 3 to 6 months old. However, whereas S422 appeared only late and concomitantly with NFT formation, the only neurons left with AT8-reactivity at 20 months were those that had undergone NFT formation. As hyperphosphorylated tau continued to accumulate, the lack of AT8-reactivity suggests regulatory mechanisms in specifically dephosphorylating the AT8 epitope in the remaining neurons. Thus, differential regulation of phosphorylation is important for NFT formation in neurodegenerative diseases with tau pathology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Brain / cytology
  • Brain / metabolism
  • Brain / pathology
  • Epitopes
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Mice, Transgenic
  • Neurofibrillary Tangles / metabolism
  • Neurofibrillary Tangles / pathology
  • Phosphorylation
  • Point Mutation*
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Solubility
  • tau Proteins* / genetics
  • tau Proteins* / metabolism

Substances

  • Epitopes
  • Protein Isoforms
  • tau Proteins