Soluble Flt-1 regulates Flk-1 activation to control hematopoietic and endothelial development in an oxygen-responsive manner

Stem Cells. 2008 Nov;26(11):2832-42. doi: 10.1634/stemcells.2008-0237. Epub 2008 Sep 4.

Abstract

Vascular endothelial growth factor (VEGF) and the vascular endothelial growth factor receptors (VEGFRs) regulate the development of hemogenic mesoderm. Oxygen concentration-mediated activation of hypoxia-inducible factor targets such as VEGF may serve as the molecular link between the microenvironment and mesoderm-derived blood and endothelial cell specification. We used controlled-oxygen microenvironments to manipulate the generation of hemogenic mesoderm and its derivatives from embryonic stem cells. Our studies revealed a novel role for soluble VEGFR1 (sFlt-1) in modulating hemogenic mesoderm fate between hematopoietic and endothelial cells. Parallel measurements of VEGF and VEGFRs demonstrated that sFlt-1 regulates VEGFR2 (Flk-1) activation in both a developmental-stage-dependent and oxygen-dependent manner. Early transient Flk-1 signaling occurred in hypoxia because of low levels of sFlt-1 and high levels of VEGF, yielding VEGF-dependent generation of hemogenic mesoderm. Sustained (or delayed) Flk-1 activation preferentially yielded hemogenic mesoderm-derived endothelial cells. In contrast, delayed (sFlt-1-mediated) inhibition of Flk-1 signaling resulted in hemogenic mesoderm-derived blood progenitor cells. Ex vivo analyses of primary mouse embryo-derived cells and analysis of transgenic mice secreting a Flt-1-Fc fusion protein (Fc, the region of an antibody which is constant and binds to receptors) support a hypothesis whereby microenvironmentally regulated blood and endothelial tissue specification is enabled by the temporally variant control of the levels of Flk-1 activation. Disclosure of potential conflicts of interest is found at the end of this article.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Line
  • Cell Lineage
  • Embryonic Stem Cells / cytology
  • Embryonic Stem Cells / metabolism
  • Endothelial Cells / cytology*
  • Endothelial Cells / metabolism
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism
  • Mesoderm / cytology
  • Mice
  • Mice, Inbred ICR
  • Mice, Transgenic
  • Mutation
  • Oxygen / physiology*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Signal Transduction
  • Vascular Endothelial Growth Factor A / genetics
  • Vascular Endothelial Growth Factor A / metabolism*
  • Vascular Endothelial Growth Factor Receptor-1 / genetics
  • Vascular Endothelial Growth Factor Receptor-1 / metabolism*
  • Vascular Endothelial Growth Factor Receptor-2 / genetics
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism*

Substances

  • Recombinant Fusion Proteins
  • Vascular Endothelial Growth Factor A
  • vascular endothelial growth factor A, mouse
  • Flt1 protein, mouse
  • Vascular Endothelial Growth Factor Receptor-1
  • Vascular Endothelial Growth Factor Receptor-2
  • Oxygen