Background: Dendritic cells (DCs) can act both as innate cells in host defense and as antigen-presenting cells for naive T cells in adaptive immunity. These functions, among others, are determined by the level of production of particular cytokines. Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by an initial phase predominated by T(H)2 cytokines that switches into a second, more chronic T(H)1-dominated eczematous phase.
Objective: To assess to what extent the AD phenotype is associated with an aberrant phenotype and function of DCs.
Methods: Classic CD1c(+)/blood DC antigen (BDCA)-1(+) myeloid (m) DCs and CD304(+)/BDCA4(+) plasmacytoid (p) DCs, the natural IFN-producing cells, were isolated from peripheral blood of patients with AD and healthy controls and analyzed for their phenotype and function.
Results: Purified CD1c(+)/BDCA1(+) mDCs from patients with AD showed a selective and dramatic reduction of IL-12p70 and TNF-alpha release. IL-12p70 reduction was attributed to a defective expression of both IL-12p35 and IL-12p40 subunits. Accordingly, mature CD1c(+)/BDCA1(+) mDCs from patients with AD induced considerably less IFN-gamma-producing and more IL-4-producing T(H) cells compared with mDCs from healthy controls. In addition, CD304(+)/BDCA4(+) pDCs from patients with AD produced significantly lower levels of IFN-alpha compared with healthy controls.
Conclusion: Myeloid DCs and pDCs from patients with AD show defective IL-12, TNF-alpha, and IFN-alpha production, which may contribute to increased susceptibility to infection and to the maintenance of the T(H)2 cell-mediated allergic state in patients with AD.