Tamoxifen inhibits transforming growth factor-alpha gene expression in human breast carcinoma samples treated with triiodothyronine

J Endocrinol Invest. 2008 Dec;31(12):1047-51. doi: 10.1007/BF03345650.

Abstract

Objectives: To examine the effects of triiodothyronine (T3), 17beta-estradiol (E2), and tamoxifen (TAM) on transforming growth factor (TGF)-alpha gene expression in primary breast cancer cell cultures and interactions between the different treatments.

Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3- mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T3; dish 3: T3+TAM; dish 4: TAM; dish 5: E2; dish 6: E2+TAM. TGF-alpha mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T3 for 48 h significantly increased TGF-alpha mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-alpha mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities.

Conclusion: We demonstrate that TGF-alpha mRNA expression is more efficiently upregulated by T3 than E2. Concomitant treatment with TAM had a mitigating effect on the T3 effect, while E2 induced TGF-alpha upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-alpha, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER alpha and beta; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / pathology
  • Carcinoma / genetics*
  • Carcinoma / pathology
  • Cell Culture Techniques
  • Down-Regulation / drug effects
  • Drug Interactions
  • Estradiol / pharmacology
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Middle Aged
  • Tamoxifen / pharmacology*
  • Transforming Growth Factor alpha / genetics*
  • Triiodothyronine / pharmacology*
  • Tumor Cells, Cultured

Substances

  • Transforming Growth Factor alpha
  • Triiodothyronine
  • Tamoxifen
  • Estradiol