Core2 1-6-N-glucosaminyltransferase-I deficiency protects injured arteries from neointima formation in ApoE-deficient mice

Arterioscler Thromb Vasc Biol. 2009 Jul;29(7):1053-9. doi: 10.1161/ATVBAHA.109.187716. Epub 2009 Apr 16.

Abstract

Objective: Core2 1 to 6-N-glucosaminyltransferase-I (C2GlcNAcT-I) plays an important role in optimizing the binding functions of several selectin ligands, including P-selectin glycoprotein ligand. We used apolipoprotein E (ApoE)-deficient atherosclerotic mice to investigate the role of C2GlcNAcT-I in platelet and leukocyte interactions with injured arterial walls, in endothelial regeneration at injured sites, and in the formation of arterial neointima.

Methods and results: Arterial neointima induced by wire injury was smaller in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice (a 79% reduction in size). Compared to controls, apoE(-/-) mice deficient in C2GlcNAcT-I also demonstrated less leukocyte adhesion on activated platelets in microflow chambers (a 75% reduction), and accumulation of leukocytes at injured areas of mouse carotid arteries was eliminated. Additionally, endothelial regeneration in injured lumenal areas was substantially faster in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice. Endothelial regeneration was associated with reduced accumulation of platelet factor 4 (PF4) at injured sites. PF4 deficiency accelerated endothelial regeneration and protected mice from neointima formation after arterial injury.

Conclusions: C2GlcNAcT-I deficiency suppresses injury-induced arterial neointima formation, and this effect is attributable to decreased leukocyte recruitment to injured vascular walls and increased endothelial regeneration. Both C2GlcNAcT-I and PF4 are promising targets for the treatment of arterial restenosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apolipoproteins E / deficiency*
  • Carotid Artery Diseases / enzymology*
  • Carotid Artery Diseases / physiopathology
  • Coronary Restenosis / enzymology
  • Coronary Restenosis / physiopathology
  • Leukocyte Rolling / physiology
  • Leukocytes / enzymology*
  • Leukocytes / physiology
  • Mice
  • Mice, Knockout
  • N-Acetylglucosaminyltransferases / deficiency
  • N-Acetylglucosaminyltransferases / physiology*
  • Platelet Adhesiveness
  • Tunica Intima / physiopathology*

Substances

  • Apolipoproteins E
  • N-Acetylglucosaminyltransferases
  • beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-acetylglucosaminyl transferase