Adrenergic regulation of the rapid component of delayed rectifier K+ current: implications for arrhythmogenesis in LQT2 patients

Heart Rhythm. 2009 Jul;6(7):1038-46. doi: 10.1016/j.hrthm.2009.02.045. Epub 2009 Mar 3.

Abstract

Background: KCNH2 gene mutations disrupting rapid component of I(K) (I(Kr)) underlie type 2 congenital long QT syndrome (LQT2). Startled auditory stimuli are specific symptomatic triggers in LQT2, thus suggesting fast arrhythmogenic mechanism.

Objective: We investigated acute alpha(1A)- and cyclic adenosine monophosphate (cAMP)-related beta-adrenergic modulation of I(Kr) in HL-1 cardiomyocytes, wild type (WT)- and 2 LQT2-associated mutant Kv11.1 channels (Y43D- and K595E-Kv11.1) reconstituted in Chinese hamster ovary (CHO) cells.

Methods: I(Kr) and Kv11.1 currents were recorded using the whole-cell patch-clamp technique and confocal microscopy of HL-1 cardiomyocytes transfected with green fluorescent protein (GFP)-tagged pleckstrin homology domain of phospholipase C-delta(1) visualized fluctuations of membrane phosphatidylinositol 4,5-bisphosphate (PIP(2)) content.

Results: In HL-1 cardiomyocytes expressing human alpha(1A)-adrenoceptor, superfusion with phenylephrine significantly reduced I(Kr) amplitude, shifted current activation to more positive potentials, and accelerated kinetics of deactivation. Confocal images showed a decline of membrane PIP(2) content during phenylephrine exposure. Simultaneous application of adenylyl cyclase activator forskolin and phosphodiesterase inhibitor 3-isobutyl-1-methylxantine (IBMX) shifted I(Kr) activation to more negative potentials and decreased tail current amplitudes after depolarizations between +10 and +50 mV. In CHO cells, alpha(1A)-adrenoceptor activation downregulated WT-Kv11.1 channels and forskolin/IBMX produced a dual effect. Expressed alone, the Y43D-Kv11.1 or K595E-Kv11.1 channel had no measurable function. However, co-expression of WT-Kv11.1 and each mutant protein evoked currents with loss-of-function alterations but identical to WT-Kv11.1 alpha(1A)- and forskolin/IBMX-induced regulation.

Conclusion: Acute adrenergic regulation of at least 2 Kv11.1 mutant channels is preserved as in WT-Kv11.1 and native I(Kr). Suppression of alpha(1A)-adrenoceptor-related transduction might have therapeutic implications in some cases of LQT2.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Animals
  • Cells, Cultured
  • Cricetinae
  • Disease Models, Animal
  • Electrophysiologic Techniques, Cardiac
  • Female
  • Humans
  • Long QT Syndrome / congenital
  • Long QT Syndrome / genetics
  • Long QT Syndrome / physiopathology*
  • Microscopy, Confocal
  • Myocytes, Cardiac / physiology*
  • Patch-Clamp Techniques
  • Potassium Channels, Voltage-Gated / genetics
  • Potassium Channels, Voltage-Gated / physiology*
  • Receptors, Adrenergic, alpha / physiology*
  • Receptors, Adrenergic, beta / physiology*

Substances

  • Potassium Channels, Voltage-Gated
  • Receptors, Adrenergic, alpha
  • Receptors, Adrenergic, beta