Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells

J Pineal Res. 2009 May;46(4):415-21. doi: 10.1111/j.1600-079X.2009.00678.x. Epub 2009 Mar 25.

Abstract

Melatonin, the main secretory product of the pineal gland, has been shown to exert an oncostatic activity in cancer cells. Recently, several studies have shown that melatonin has antiangiogenic properties. However, the mechanism by which melatonin exerts antiangiogenenic effects is not understood. Hypoxia inducible factor (HIF)-1 is a transcription factor which mediates adaptive response to changes in tissue oxygenation. HIF-1 is a heterodimer formed by the association of a constitutively expressed HIF-1 beta subunit and a HIF-1 alpha subunit, the expression of which is highly regulated. In this study, pharmacologic concentrations of melatonin was found to inhibit expression of HIF-1 alpha protein under both normoxic and hypoxic conditions in DU145, PC-3, and LNCaP prostate cancer cells without affecting HIF-1 alpha mRNA levels. Consistent with the reduction in HIF-1 alpha protein levels, melatonin inhibited HIF-1 transcriptional activity and the release of vascular endothelial growth factor. We found that the suppression of HIF-1 alpha expression by melatonin correlated with dephosphorylation of p70S6K and its direct target RPS6, a pathway known to regulate HIF-1 alpha expression at the translational level. Metabolic labeling assays indicated that melatonin inhibits de novo synthesis of HIF-1 alpha protein. Taken together, these results suggest that the pharmacologic concentration of melatonin inhibits HIF-1 alpha expression through the suppression of protein translation in prostate cancer cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Data Interpretation, Statistical
  • Down-Regulation / drug effects
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / biosynthesis*
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Male
  • Melatonin / pharmacology*
  • Phosphorylation
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism*
  • Protein Biosynthesis / drug effects
  • RNA Stability / drug effects
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Melatonin