A requirement for epsin in mitotic membrane and spindle organization

J Cell Biol. 2009 Aug 24;186(4):473-80. doi: 10.1083/jcb.200902071.

Abstract

Eukaryotic cells possess a sophisticated membrane system to facilitate diverse functions. Whereas much is known about the nature of membrane systems in interphase, the organization and function of the mitotic membrane system are less well understood. In this study, we show that epsin, an endocytic adapter protein, regulates mitotic membrane morphology and spindle integrity in HeLa cells. Using epsin that harbors point mutations in the epsin NH2-terminal homology domain and spindle assembly assays in Xenopus laevis egg extracts, we show that epsin-induced membrane curvature is required for proper spindle morphogenesis, independent of its function in endocytosis during interphase. Although several other membrane-interacting proteins, including clathrin, AP2, autosomal recessive hypercholesterolemia, and GRASP65, are implicated in the regulation of mitosis, whether they participate through regulation of membrane organization is unclear. Our study of epsin provides evidence that mitotic membrane organization influences spindle integrity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Vesicular Transport / genetics
  • Adaptor Proteins, Vesicular Transport / metabolism*
  • Animals
  • Cell Membrane* / metabolism
  • Cell Membrane* / ultrastructure
  • Endocytosis / physiology
  • HeLa Cells
  • Histones / genetics
  • Histones / metabolism
  • Humans
  • Mitosis / physiology*
  • Oocytes / metabolism
  • Point Mutation
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Spindle Apparatus* / metabolism
  • Spindle Apparatus* / ultrastructure
  • Tubulin / genetics
  • Tubulin / metabolism
  • Xenopus laevis

Substances

  • Adaptor Proteins, Vesicular Transport
  • Histones
  • RNA, Small Interfering
  • Recombinant Fusion Proteins
  • Tubulin
  • epsin