Genetic polymorphisms in genes encoding antioxidant enzymes are associated with diabetic retinopathy in type 1 diabetes

Diabetes Care. 2009 Dec;32(12):2258-62. doi: 10.2337/dc09-0852. Epub 2009 Sep 14.

Abstract

Objective: Oxidative stress plays an important role in the development of microangiopathic complications in type 1 diabetes. We investigated polymorphic markers in genes encoding enzymes regulating production of reactive oxygen species in association with diabetic retinopathy or diabetic nephropathy.

Research design and methods: A total of 124 patients with type 1 diabetes were investigated in this case-control study. All subjects were matched for sex, age, and duration of diabetes. Genotyping was conducted using real-time PCR for p.Val16Ala polymorphism in the MnSOD gene and c.C-262T in the promoter region of the CAT gene. Multiplex PCR method was used for determination of GSTM1 and GSTT1 polymorphic deletions. Fluorescence-labeled PCR amplicons and fragment analysis was used for assessing the number of pentanucleotide (CCTTT)n repeats in inducible nitric oxide synthase.

Results: A positive association of MnSOD genotype Val/Val (odds ratio [OR] 2.49, 95% CI 1.00-6.16, P = 0.045) and GSTM1-1 genotype (2.63, 1.07-6.47, P = 0.031) with diabetic retinopathy but not with diabetic nephropathy was demonstrated. Additionally, the combination of the two genotypes conveyed an even higher risk (4.24, 1.37-13.40, P = 0.009). No other investigated genetic polymorphisms were associated with either diabetic retinopathy or diabetic nephropathy.

Conclusions: Selected polymorphisms in genes encoding MnSOD and GSTM1 could be added to a panel of genetic markers for identification of individuals with type 1 diabetes at an increased risk for developing diabetic retinopathy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Age of Onset
  • Amino Acid Substitution
  • Case-Control Studies
  • Diabetes Mellitus, Type 1 / enzymology
  • Diabetes Mellitus, Type 1 / genetics*
  • Diabetic Retinopathy / enzymology
  • Diabetic Retinopathy / genetics*
  • Female
  • Gene Frequency
  • Genetic Carrier Screening
  • Genetic Markers
  • Glutathione Transferase / genetics*
  • Glycated Hemoglobin / metabolism
  • Humans
  • Male
  • Polymerase Chain Reaction
  • Polymorphism, Genetic*
  • Reactive Oxygen Species / metabolism
  • Reference Values
  • Superoxide Dismutase / genetics*
  • Young Adult

Substances

  • Genetic Markers
  • Glycated Hemoglobin A
  • Reactive Oxygen Species
  • Superoxide Dismutase
  • Glutathione Transferase
  • glutathione S-transferase M1