SOD2 gene polymorphisms in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy

Mol Vis. 2009 Sep 9:15:1819-26.

Abstract

Purpose: A nonsynonymous coding variant in the manganese superoxide dismutase (SOD2) gene (V16A, rs4880) has been implicated in neovascular age-related macular degeneration (AMD). However, the findings have been inconsistent. Two studies in Japanese populations reported an opposite direction of association of the same allele at the V16A variant, whereas one study in a Northern Irish population found no effect of the variant on the risk of developing neovascular AMD. To address these apparently contradictory reports, we validated the association in a Japanese population.

Methods: In a Japanese population, we genotyped the V16A variant in 116 neovascular AMD patients, 140 polypoidal choroidal vasculopathy (PCV) patients, and 189 control participants. This association was also tested in a population of PCV participants to avoid variable findings across studies due to underlying sample heterogeneity and because disease phenotype was not well described in previous studies. We analyzed a tagging single nucleotide polymorphism (SNP) in addition to the V16A variant to capture all common SOD2 variations verified by the HapMap project. Genotyping was conducted using TaqMan technology. Associations were tested using single-SNP and haplotype analyses as well as a meta-analysis of the published literature. Population stratification was also evaluated in our study population.

Results: We found no detectable association of the V16A variant or any other common SOD2 variation with either neovascular AMD or PCV, as demonstrated by both single-SNP and haplotype analyses. Population structure analyses precluded stratification artifacts in our study cohort. A meta-analysis of the association between the V16A variant and neovascular AMD also failed to detect a significant association.

Conclusions: We found no evidence to support the role of any common SOD2 variations including the V16A variant in the susceptibility to neovascular AMD or PCV. Our study highlights the importance and difficulty in replicating genetic association studies of complex human diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alleles
  • Choroid Diseases / enzymology*
  • Choroid Diseases / genetics*
  • Female
  • Genetic Predisposition to Disease
  • Haplotypes
  • Humans
  • Macular Degeneration / enzymology*
  • Macular Degeneration / genetics*
  • Male
  • Meta-Analysis as Topic
  • Middle Aged
  • Mutant Proteins / genetics
  • Polymorphism, Single Nucleotide / genetics*
  • Superoxide Dismutase / genetics*

Substances

  • Mutant Proteins
  • Superoxide Dismutase
  • superoxide dismutase 2