Sterol regulatory element-binding protein-1c knockdown protected INS-1E cells from lipotoxicity

Diabetes Obes Metab. 2010 Jan;12(1):35-46. doi: 10.1111/j.1463-1326.2009.01093.x. Epub 2009 Sep 16.

Abstract

Objective: The reduction in insulin secretory capacity and beta-cell mass has been attributed, at least partially, to lipotoxicity, which may contribute to the development of type 2 diabetes. Chronic free fatty acids (FFA) exposure impairs pancreatic beta-cell function and induces beta-cell apoptosis. This study is to elucidate the underlying molecular mechanisms.

Research design and methods: We exposed INS-1E pancreatic beta-cell line to palmitate or oleate, and measured the glucose stimulated insulin secretion (GSIS). The effect of FFA on sterol regulatory element-binding protein (SREBP)-1c lipogenic pathway, and expression of genes involved in beta-cell functions, including AMPK (AMP-activated protein kinase), UCP-2 (uncoupling protein-2), IRS-2 (insulin receptor substrate-2), PDX-1 (pancreatic duodenal homeobox-1), GLUT-2 (glucose transporter-2) and B cell lymphoma/leukaemia-2 (Bcl-2) were investigated. Apoptosis of these exposed cells was determined by MitoCapture, Annexin V-Cy3 or terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Cell lipid accumulation was measured by oil red O staining or TG extraction. Also SREBP-1c expression knockdown were used.

Results: FFA treatment resulted in SREBP-1c overexpression, impaired GSIS, lipid accumulation, apoptosis of INS-1E cells. In addition, the expression of lipogenic genes and UCP-2 were upregulated, but AMPK, IRS-2, PDX-1, GLUT-2 and Bcl-2 were downregulated in the exposed cells. However, these lipotoxic effects of FFA were largely prevented by induction of a SREBP-1c small interfering RNA.

Conclusions: These data suggest a strong correlation between FFA treatment and SREBP-1c activation in INS-1E cells. SREBP-1c might be a major factor responsible for beta-cell lipotoxicity, and SREBP-1c knockdown could protect INS-1E cells from lipotoxicity, which is implicating a therapeutic potential for treating diabetes related to lipotoxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Blotting, Western
  • Cell Line
  • Diabetes Mellitus, Type 2 / metabolism*
  • Fatty Acids, Nonesterified / pharmacology
  • Gene Expression
  • Gene Knockdown Techniques
  • Glucose / pharmacology
  • Humans
  • Insulin / metabolism*
  • Insulin Secretion
  • Insulin-Secreting Cells / cytology
  • Insulin-Secreting Cells / drug effects
  • Insulin-Secreting Cells / metabolism*
  • Lipid Metabolism / physiology
  • Oleic Acid / pharmacology
  • Palmitates / pharmacology
  • RNA, Small Interfering / isolation & purification
  • Sterol Regulatory Element Binding Protein 1 / genetics
  • Sterol Regulatory Element Binding Protein 1 / metabolism*
  • Transcription, Genetic / drug effects
  • Triglycerides / isolation & purification
  • Up-Regulation

Substances

  • Fatty Acids, Nonesterified
  • Insulin
  • Palmitates
  • RNA, Small Interfering
  • Sterol Regulatory Element Binding Protein 1
  • Triglycerides
  • Oleic Acid
  • Glucose