Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities

Hum Mol Genet. 2009 Dec 1;18(23):4552-64. doi: 10.1093/hmg/ddp421. Epub 2009 Sep 24.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by motor neuron degeneration. Mutations in Cu,Zn-superoxide dismutase (SOD1) are responsible for 20% of familial ALS cases via a toxic gain of function. In mutant SOD1 transgenic mice, mitochondria of spinal motor neurons develop abnormal morphology, bioenergetic defects and degeneration, which are presumably implicated in disease pathogenesis. SOD1 is mostly a cytosolic protein, but a substantial portion is associated with organelles, including mitochondria, where it localizes predominantly in the intermembrane space (IMS). However, whether mitochondrial mutant SOD1 contributes to disease pathogenesis remains to be elucidated. We have generated NSC34 motor neuronal cell lines expressing wild-type or mutant SOD1 containing a cleavable IMS targeting signal to directly investigate the pathogenic role of mutant SOD1 in mitochondria. We show that mitochondrially-targeted SOD1 localizes to the IMS, where it is enzymatically active. We prove that mutant IMS-targeted SOD1 causes neuronal toxicity under metabolic and oxidative stress conditions. Furthermore, we demonstrate for the first time neurite mitochondrial fragmentation and impaired mitochondrial dynamics in motor neurons expressing IMS mutant SOD1. These defects are associated with impaired maintenance of neuritic processes. Our findings demonstrate that mutant SOD1 localized in the IMS is sufficient to determine mitochondrial abnormalities and neuronal toxicity, and contributes to ALS pathogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / enzymology*
  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / pathology
  • Animals
  • Cell Line
  • Disease Models, Animal
  • Humans
  • Mice
  • Mice, Transgenic
  • Mitochondria / enzymology*
  • Mitochondria / genetics
  • Mitochondrial Membranes / enzymology
  • Motor Neurons / enzymology*
  • Motor Neurons / pathology
  • Mutation*
  • Oxidative Stress
  • Protein Transport
  • Superoxide Dismutase / genetics*
  • Superoxide Dismutase / toxicity*
  • Superoxide Dismutase-1

Substances

  • SOD1 protein, human
  • Sod1 protein, mouse
  • Superoxide Dismutase
  • Superoxide Dismutase-1