Oncogenic KRAS and BRAF differentially regulate hypoxia-inducible factor-1alpha and -2alpha in colon cancer

Cancer Res. 2009 Nov 1;69(21):8499-506. doi: 10.1158/0008-5472.CAN-09-2213. Epub 2009 Oct 20.

Abstract

KRAS and BRAF mutations are frequently observed in human colon cancers. These mutations occur in a mutually exclusive manner, and each is associated with distinctive biological features. We showed previously that K-ras can interact with hypoxia to activate multiple signaling pathways. Many hypoxic responses are mediated by hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha, and we sought to define the roles of mutant KRAS and BRAF in the induction of HIF-1alpha and HIF-2alpha in colon cancer cells. Ectopic expression of mutant K-ras in Caco2 cells enhanced the hypoxic induction of only HIF-1alpha, whereas mutant BRAF enhanced both HIF-1alpha and HIF-2alpha. Knockout or knockdown of mutant KRAS in DLD-1 and HCT116 cells impaired the hypoxic induction of only HIF-1alpha. HIF-1alpha mRNA levels were comparable in cells with and without a KRAS mutation. However, the rate of HIF-1alpha protein synthesis was higher in cells with a KRAS mutation, and this was suppressed by the phosphoinositide 3-kinase inhibitor LY294002. In contrast, knockdown of mutant BRAF in HT29 cells suppressed both HIF-1alpha and HIF-2alpha. Although BRAF regulated mRNA levels of both HIF-1alpha and HIF-2alpha, knockdown of BRAF or treatment with the MEK inhibitor PD98059 impaired the translation of only HIF-2alpha. Our data reveal that oncogenic KRAS and BRAF mutations differentially regulate the hypoxic induction of HIF-1alpha and HIF-2alpha in colon cancer, and this may potentially contribute to the phenotypic differences of KRAS and BRAF mutations in colon tumors.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Basic Helix-Loop-Helix Transcription Factors / metabolism*
  • Blotting, Western
  • Cell Line, Tumor
  • Colonic Neoplasms / genetics*
  • Colonic Neoplasms / metabolism
  • Colonic Neoplasms / pathology
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Hypoxia
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Mutation / genetics*
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins / genetics*
  • Proto-Oncogene Proteins B-raf / genetics*
  • Proto-Oncogene Proteins p21(ras)
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • ras Proteins / genetics*

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • KRAS protein, human
  • Proto-Oncogene Proteins
  • RNA, Messenger
  • endothelial PAS domain-containing protein 1
  • Phosphatidylinositol 3-Kinases
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Proto-Oncogene Proteins p21(ras)
  • ras Proteins