Localization of DNA sequences to a region within Xp11.21 between incontinentia pigmenti (IP1) X-chromosomal translocation breakpoints

Am J Hum Genet. 1991 Jan;48(1):53-64.

Abstract

Incontinentia pigmenti (IP) is an X-linked dominant disorder characterized by developmental anomalies of the tissues and organs derived from embryonic ectoderm and neuroectoderm. An IP locus, designated IP1, probably resides in Xp11.21, since five unrelated patients with nonfamilial IP have been identified who possess constitutional de novo reciprocal X;autosome translocations involving Xp11.21. We have used a series of somatic cell hybrids containing the rearranged chromosomes derived from three of the five IP1 patients, along with other hybrid cell lines, to map probes in the vicinity of the IP1 locus. Five anonymous DNA loci--DXS422, DXS14, DXS343, DXS429, and DXS370--have been mapped to a region within Xp11.21, between two IP1 X-chromosomal translocation breakpoints; the IP1 t(X;17) breakpoint is proximal (centromeric) to this region, and the IP1 t(X;13) and t(X;9) X-chromosomal breakpoints lie distal to it. While no IP1 translocation breakpoint has yet been identified by pulsed-field gel electrophoretic (PFGE) analysis, an overlap between three probes--p58-1, 7PSH3.5, and cpX210--has been detected, placing these probes within 125 kb. Four probes--p58-1, 7PSH3.5, cpX210, and 30CE2.8--have been helpful in constructing a 1,250-kb PFGE map of the region between the breakpoints; these results suggest that the IP1 X-chromosomal translocation breakpoints are separated by at least this distance. The combined somatic cell hybrid and PFGE analyses we report here favor the probe order DXS323-(IP1 t(X;13), IP1, t(X;9]-(DXS422, DXS14, DXS343, DXS429, DXS370)-(IP1 t(X;17), DXZ1). These sequences provide a starting point for identifying overlapping genomic sequences that span the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should now assist the cloning of this locus.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blotting, Southern
  • Cell Line
  • Chromosome Banding
  • Cricetinae
  • Cricetulus
  • DNA Probes
  • Female
  • Genetic Linkage
  • Humans
  • Hybrid Cells
  • Incontinentia Pigmenti / genetics*
  • Restriction Mapping
  • Translocation, Genetic*
  • X Chromosome*

Substances

  • DNA Probes