Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase

Hum Mol Genet. 2010 Feb 15;19(4):563-72. doi: 10.1093/hmg/ddp523. Epub 2009 Nov 20.

Abstract

Action myoclonus-renal failure syndrome (AMRF) is caused by mutations in the lysosomal integral membrane protein type 2 (LIMP-2/SCARB2). LIMP-2 was identified as a sorting receptor for beta-glucocerebrosidase (beta-GC), which is defective in Gaucher disease. To date, six AMRF-causing mutations have been described, including splice site, missense and nonsense mutations. All mutations investigated in this study lead to a retention of LIMP-2 in the endoplasmic reticulum (ER) but affect the binding to beta-GC differentially. From the three nonsense mutations, only the Q288X mutation was still able to bind to beta-GC as efficiently as compared with wild-type LIMP-2, whereas the W146SfsX16 and W178X mutations lost their beta-GC-binding capacity almost completely. The LIMP-2 segment 145-288, comprising the nonsense mutations, contains a highly conserved coiled-coil domain, which we suggest determines beta-GC binding. In fact, disruption of the helical arrangement and amphiphatic nature of the coiled-coil domain abolishes beta-GC binding, and a synthetic peptide comprising the coiled-coil domain of LIMP-2 displays pH-selective multimerization properties. In contrast to the reduced binding properties of the nonsense mutations, the only missense mutation (H363N) found in AMRF leads to increased binding of beta-GC to LIMP-2, indicating that this highly conserved histidine modifies the affinity of LIMP-2 to its ligand. With the present study, we demonstrate that disruption of the coiled-coil structure or AMRF disease-causing mutations abolish beta-GC binding, indicating the importance of an intact coiled-coil structure for the interaction of LIMP-2 and beta-GC.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD36 Antigens / chemistry
  • CD36 Antigens / genetics
  • CD36 Antigens / metabolism*
  • Disease Models, Animal
  • Glucosylceramidase / genetics*
  • Glucosylceramidase / metabolism*
  • Humans
  • Ligands
  • Lysosomal Membrane Proteins / chemistry
  • Lysosomal Membrane Proteins / genetics
  • Lysosomal Membrane Proteins / metabolism*
  • Mice
  • Mice, Knockout
  • Mutation*
  • Myoclonic Epilepsies, Progressive / genetics*
  • Myoclonic Epilepsies, Progressive / metabolism
  • Protein Binding
  • Protein Structure, Tertiary
  • Receptors, Scavenger / chemistry
  • Receptors, Scavenger / genetics
  • Receptors, Scavenger / metabolism*

Substances

  • CD36 Antigens
  • Ligands
  • Lysosomal Membrane Proteins
  • Receptors, Scavenger
  • SCARB2 protein, human
  • Scarb2 protein, mouse
  • Glucosylceramidase