Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations

Hum Mol Genet. 2010 Feb 15;19(4):584-96. doi: 10.1093/hmg/ddp525. Epub 2009 Nov 24.

Abstract

Human acute intermittent porphyria (AIP), the most common acute hepatic porphyria, is an autosomal dominant inborn error of heme biosynthesis due to the half-normal activity of hydroxymethylbilane synthase (HMB-synthase). Here, we describe the first naturally occurring animal model of AIP in four unrelated cat lines who presented phenotypically as congenital erythropoietic porphyria (CEP). Affected cats had erythrodontia, brownish urine, fluorescent bones, and markedly elevated urinary uroporphyrin (URO) and coproporphyrin (COPRO) consistent with CEP. However, their uroporphyrinogen-III-synthase (URO-synthase) activities (deficient in CEP) were normal. Notably, affected cats had half-normal HMB-synthase activities and elevated urinary 5-aminolevulinic acid (ALA) and porphobilinogen (PBG), the deficient enzyme and accumulated metabolites in human AIP. Sequencing the feline HMB-synthase gene revealed different mutations in each line: a duplication (c.189dupT), an in-frame 3 bp deletion (c.842_844delGAG) identical to that causing human AIP and two missense mutations, c.250G>A (p.A84T) and c.445C>T (p.R149W). Prokaryotic expression of mutations c.842_844delGAG and c.445C>T resulted in mutant enzymes with <1% wild-type activity, whereas c.250G>A expressed a stable enzyme with approximately 35% of wild-type activity. The discolored teeth from the affected cats contained markedly elevated URO I and III, accounting for the CEP-like phenocopy. In three lines, the phenotype was an autosomal dominant trait, while affected cats with the c.250G>A (p.A84T) mutation were homozygous, a unique recessive form of AIP. These animal models may permit further investigation of the pathogenesis of the acute, life-threatening neurological attacks in human AIP and the evaluation of therapeutic strategies. GenBank Accession Numbers: GQ850461-GQ850464.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bone and Bones / metabolism
  • Cat Diseases / enzymology*
  • Cat Diseases / genetics
  • Cat Diseases / metabolism
  • Cats / genetics*
  • Cats / metabolism
  • Coproporphyrins / urine
  • Disease Models, Animal*
  • Female
  • Humans
  • Hydroxymethylbilane Synthase / chemistry
  • Hydroxymethylbilane Synthase / genetics*
  • Hydroxymethylbilane Synthase / metabolism
  • Male
  • Models, Molecular
  • Molecular Sequence Data
  • Mutation*
  • Porphyria, Acute Intermittent / enzymology*
  • Porphyria, Acute Intermittent / genetics
  • Porphyria, Acute Intermittent / metabolism
  • Porphyria, Erythropoietic / enzymology*
  • Porphyria, Erythropoietic / genetics
  • Porphyria, Erythropoietic / metabolism
  • Porphyrins / metabolism
  • Tooth / metabolism
  • Uroporphyrins / urine

Substances

  • Coproporphyrins
  • Porphyrins
  • Uroporphyrins
  • Hydroxymethylbilane Synthase

Associated data

  • GENBANK/GQ850461
  • GENBANK/GQ850462
  • GENBANK/GQ850463
  • GENBANK/GQ850464