Effect of MDR1 polymorphism on multidrug resistance expression in breast cancer patients

Genet Mol Res. 2010 Jan 12;9(1):34-40. doi: 10.4238/vol9-1gmr669.

Abstract

One of the limitations in the treatment of cancer patients with chemotherapy is the development of multidrug resistance (MDR). A well-known mechanism responsible for drug resistance is over-expression of ABC-transporter genes such as MDR1. This gene encodes p-glycoprotein (P-gp), a transmembrane glycoprotein that transports many hydrophobic substrates and anti-cancer drugs out of the cell. MDR1 gene polymorphisms could alter the expression level of P-gp and consequently result in drug resistance. We investigated a possible association between MDR1 gene C3435T polymorphism and its expression in Iranian breast cancer patients. PCR-RFLP was used for the detection of C3435T single nucleotide polymorphism in 54 breast cancer patients and 50 healthy individuals. The expression level of MDR1 was determined by real-time quantitative PCR. We observed no difference in the frequency of C3435T polymorphism between breast cancer patients and healthy controls. However, there was a significant association between MDR1 expression levels and C3435T polymorphism in the patients. C3435T polymorphism may play a role in inducing drug resistance by altering the expression level of the MDR1 gene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics*
  • Adult
  • Breast Neoplasms / genetics*
  • Drug Resistance, Multiple / genetics*
  • Drug Resistance, Neoplasm / genetics*
  • Female
  • Gene Frequency
  • Genotype
  • Humans
  • Iran
  • Middle Aged
  • Polymorphism, Genetic*

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1