MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling

Clin Cancer Res. 2010 Feb 1;16(3):867-75. doi: 10.1158/1078-0432.CCR-09-1840. Epub 2010 Jan 26.

Abstract

Purpose: This study aims to profile the expressions of 156 microRNAs (miRNA) in hepatocellular carcinoma (HCC) and to characterize the functions of miR-222, the most significantly upregulated candidate identified.

Experimental design: miRNA expression profile in HCC tumors, matching adjacent cirrhotic livers, and cell lines was conducted using quantitative PCR. Common miR-222 upregulations were further validated in a larger cohort of tumors. The functional effects of miR-222 inhibition on HCC cell lines were examined. The downstream modulated pathways and target of miR-222 were investigated by coupling gene expression profiling and pathway analysis, and by in silico prediction, respectively. Luciferase reporter assay was done to confirm target interaction.

Results: We identified a 40-miRNA signature that could discriminate tumors from adjacent cirrhotic liver tissue, and further corroborated common miR-222 overexpression in tumors relative to its premalignant counterpart (55.3%; P < 0.0001). Increased miR-222 expression correlated significantly with advanced stage HCC and with the shorter disease-free survival of patients (P < or = 0.01). Inhibition of miR-222 in Hep3B and HKCI-9 significantly retarded cell motility (P < 0.05). Further investigations suggested that AKT signaling was the major pathway influenced by miR-222. A consistent reduction of AKT phosphorylation in Hep3B and HKCI-9 was shown following miR-222 suppression. The protein phosphatase 2A subunit B (PPP2R2A) was predicted as a putative miR-222 target in silico. We found that miR-222 inhibition could augment the tumor protein level and restore luciferase activity in reporter construct containing the PPP2R2A 3' untranslated region (P = 0.0066).

Conclusions: Our study showed that miR-222 overexpression is common in HCC and could confer metastatic potentials in HCC cells, possibly through activating AKT signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular / genetics*
  • Carcinoma, Hepatocellular / pathology
  • Cell Movement*
  • Disease Progression
  • Humans
  • Liver Cirrhosis / complications
  • Liver Cirrhosis / genetics
  • Liver Neoplasms / genetics*
  • Liver Neoplasms / pathology
  • MicroRNAs / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction / genetics
  • Up-Regulation

Substances

  • MIRN222 microRNA, human
  • MicroRNAs
  • Proto-Oncogene Proteins c-akt