Glucocorticoid regulation of the vitamin D receptor

J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):372-5. doi: 10.1016/j.jsbmb.2010.03.081. Epub 2010 Apr 14.

Abstract

Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immuno-precipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Calcitriol / metabolism
  • Carcinoma, Squamous Cell / metabolism
  • Chromatin Immunoprecipitation
  • Dexamethasone / metabolism
  • Gene Expression Regulation*
  • Glucocorticoids / metabolism*
  • Humans
  • Hypercalcemia / metabolism
  • Mice
  • Models, Biological
  • Promoter Regions, Genetic
  • Receptors, Calcitriol / metabolism*
  • Response Elements
  • Steroid Hydroxylases / genetics
  • Vitamin D3 24-Hydroxylase

Substances

  • Glucocorticoids
  • Receptors, Calcitriol
  • Dexamethasone
  • Steroid Hydroxylases
  • CYP24A1 protein, human
  • Cyp24a1 protein, mouse
  • Vitamin D3 24-Hydroxylase
  • Calcitriol