Angiotensin II stimulates thick ascending limb superoxide production via protein kinase C(α)-dependent NADPH oxidase activation

J Biol Chem. 2010 Jul 9;285(28):21323-8. doi: 10.1074/jbc.M110.109157. Epub 2010 May 6.

Abstract

Angiotensin II (Ang II) stimulates thick ascending limb (TAL) O₂ production, but the receptor(s) and signaling mechanism(s)involved are unknown. The effect of Ang II on O₂. is generally attributed to the AT₁receptor. In some cells, Ang II stimulates protein kinase C (PKC), whose α isoform (PKCα) can activate NADPH oxidase. We hypothesized that in TALs, Ang II stimulates O₂. via AT₁and PKC α-dependent NADPH oxidase activation.In rat TALs, 1 nM Ang II stimulated O₂. from 0.760.17 to 1.97 0.21 nmol/min/mg (p < 0.001). An AT₁antagonist blocked the stimulatory effect of Ang II on O₂. (0.87 0.25 nmol/min/mg; p < 0.006), whereas an AT₂ antagonist had no effect (2.16 0.133 nmol/min/mg; p < 0.05 versus vehicle). Apocynin, an NADPH oxidase inhibitor, blocked Ang II-stimulated O₂by 90% (p <0.01). Ang II failed to stimulate O₂. in TALs from p47(phox) -/- mice (p < 0.02). Monitored by fluorescence resonance energy transfer, Ang II increased PKC activity from 0.02 0.03 to 0.13 0.02 arbitrary units (p < 0.03). A general PKC inhibitor, GF109203X, blocked the effect of Ang II on O₂(1.47 +/- .21 versus 2.72 +/- .47 nmol/min/mg with Ang II alone; p < 0.03). A PKCα- and ß-selective inhibitor, Gö6976, also blocked the stimulatory effect of Ang II on O₂. (0.59 +/- 0.15 versus 2.05 +/- 0.28 nmol/min/mg with Ang II alone; p < 0.001). To distinguish between PKC α and PKC ß, we used tubules expressing dominant-negative PKC α or -ß. In control TALs, Ang II stimulated O2. by 2.17 0.44 nmol/min/mg (p < 0.011). In tubules expressing dominant-negative PKC α, Ang II failed to stimulate O2. (change: -0.30 +/- 0.27 nmol/min/mg). In tubules expressing dominant-negative PKC ß1, Ang II stimulated O2. by 2.080.69 nmol/min/mg (p < 0.002). We conclude that Ang II stimulates TAL O₂production via activation of AT₁receptors and PKC α-dependent NADPH oxidase.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Angiotensin II / metabolism*
  • Angiotensins / chemistry
  • Animals
  • Enzyme Activation*
  • Fluorescence Resonance Energy Transfer / methods
  • Gene Expression Regulation, Enzymologic*
  • Genes, Dominant
  • Male
  • Models, Biological
  • NADPH Oxidases / chemistry
  • NADPH Oxidases / metabolism*
  • Oxidative Stress
  • Oxygen / chemistry
  • Protein Kinase C-alpha / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Superoxides / metabolism*

Substances

  • Angiotensins
  • Superoxides
  • Angiotensin II
  • NADPH Oxidases
  • Protein Kinase C-alpha
  • Oxygen