Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis

J Immunol. 1991 Jul 1;147(1):117-23.

Abstract

Elevated spontaneous IgG production is characteristic of SLE. To identify the factors that support it, IL-6, a cytokine with an important role in the differentiation of IgG-secreting cells, was studied in SLE patients. Higher than normal levels of IL-6 were found, by a B9 assay, in sera of 63 of 70 patients (p less than 0.05). IL-6 was detected in 36 of 37 active SLE sera in higher titers (p = 0.009) than those for inactive SLE (n = 33), which were higher (p less than 0.05) than healthy controls (n = 15). IL-6 mRNA was detected in freshly isolated PBMC of 11 of 11 patients but not in normal PBMC, whereas IL-1 mRNA was detected only in patients with active disease. IL-6 activity was recovered from PBMC of four SLE patients, but not from four normal donors. By immunoperoxidase, IL-6 was detected in the cytoplasm of SLE monocytes and lymphocytes. When SLE PBMC were grown in short term cultures with no deliberate stimulation, expression of the IL-6 gene declined rapidly. Accordingly, the spontaneous production of IgG by SLE PBMC could be enhanced by exogenous IL-6. Spontaneous IgG production was diminished by 20 to 65% in the presence of neutralizing antibodies to IL-6, TNF-alpha, or IL-1. In contrast, neutralization of endogenous IL-4 increased production by approximately 40%. Anti-TNF-alpha treatment decreased IL-6 content of PBMC cultures, whereas anti-IL-4 augmented it, and exogenous IL-6 reversed anti-TNF-alpha effects on IgG production. Therefore, it is possible that the neutralization of TNF-alpha and IL-4 affected IgG production by modulating the synthesis/activity of IL-6. These results support the concept that SLE B cell hyperactivity is promoted by dysregulation of endogenous cytokines and suggest that IL-6, in particular, has an important pathogenic role.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blotting, Northern
  • Cells, Cultured
  • Cytokines / genetics
  • Female
  • Gene Expression
  • Humans
  • Immunoglobulin G / biosynthesis
  • In Vitro Techniques
  • Interleukin-6 / blood
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism*
  • Lupus Erythematosus, Systemic / metabolism*
  • Lymphocytes / metabolism
  • Monocytes / metabolism
  • RNA, Messenger / genetics

Substances

  • Cytokines
  • Immunoglobulin G
  • Interleukin-6
  • RNA, Messenger