The reciprocal regulation of gamma-synuclein and IGF-I receptor expression creates a circuit that modulates IGF-I signaling

J Biol Chem. 2010 Oct 1;285(40):30480-8. doi: 10.1074/jbc.M110.131698. Epub 2010 Jul 29.

Abstract

Insulin-like growth factor (IGF) system plays important roles in carcinogenesis and maintenance of the malignant phenotype. Signaling through the IGF-I receptor (IGF-IR) has been shown to stimulate the growth and motility of a wide range of cancer cells. γ-synuclein (SNCG) is primarily expressed in peripheral neurons but also overexpressed in various cancer cells. Overexpression of SNCG correlates with tumor progression. In the present study we demonstrated a reciprocal regulation of IGF-I signaling and SNCG expression. IGF-I induced SNCG expression in various cancer cells. IGF-IR knockdown or IGF-IR inhibitor repressed SNCG expression. Both phosphatidylinositol 3-kinase and mitogen-activated protein kinase were involved in IGF-I induction of SNCG expression. Interestingly, SNCG knockdown led to proteasomal degradation of IGF-IR, thereby decreasing the steady-state levels of IGF-IR. Silencing of SNCG resulted in a decrease in ligand-induced phosphorylation of IGF-IR and its downstream signaling components, including insulin receptor substrate (IRS), Akt, and ERK1/2. Strikingly, SNCG physically interacted with IGF-IR and IRS-2. Silencing of IRS-2 impaired the interaction between SNCG and IGF-IR. Finally, SNCG knockdown suppressed IGF-I-induced cell proliferation and migration. These data reveal that SNCG and IGF-IR are mutually regulated by each other. SNCG blockade may suppress IGF-I-induced cell proliferation and migration. Conversely, IGF-IR inhibitors may be of utility in suppressing the aberrant expression of SNCG in cancer cells and thereby block its pro-tumor effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Movement / genetics
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic*
  • Gene Knockdown Techniques
  • Hep G2 Cells
  • Humans
  • Insulin Receptor Substrate Proteins / genetics
  • Insulin Receptor Substrate Proteins / metabolism
  • Insulin-Like Growth Factor I / genetics
  • Insulin-Like Growth Factor I / metabolism*
  • Mitogen-Activated Protein Kinase 1 / genetics
  • Mitogen-Activated Protein Kinase 1 / metabolism
  • Mitogen-Activated Protein Kinase 3 / genetics
  • Mitogen-Activated Protein Kinase 3 / metabolism
  • Neoplasms / genetics
  • Neoplasms / metabolism*
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphorylation / genetics
  • Proteasome Endopeptidase Complex / genetics
  • Proteasome Endopeptidase Complex / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptor, IGF Type 1 / genetics
  • Receptor, IGF Type 1 / metabolism*
  • Signal Transduction*
  • gamma-Synuclein / genetics
  • gamma-Synuclein / metabolism*

Substances

  • IRS2 protein, human
  • Insulin Receptor Substrate Proteins
  • gamma-Synuclein
  • Insulin-Like Growth Factor I
  • Phosphatidylinositol 3-Kinases
  • Receptor, IGF Type 1
  • Proto-Oncogene Proteins c-akt
  • MAPK1 protein, human
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Proteasome Endopeptidase Complex