Regulation of somatic cell reprogramming through inducible mir-302 expression

Nucleic Acids Res. 2011 Feb;39(3):1054-65. doi: 10.1093/nar/gkq850. Epub 2010 Sep 24.

Abstract

Global demethylation is required for early zygote development to establish stem cell pluripotency, yet our findings reiterate this epigenetic reprogramming event in somatic cells through ectopic introduction of mir-302 function. Here, we report that induced mir-302 expression beyond 1.3-fold of the concentration in human embryonic stem (hES) H1 and H9 cells led to reprogramming of human hair follicle cells (hHFCs) to induced pluripotent stem (iPS) cells. This reprogramming mechanism functioned through mir-302-targeted co-suppression of four epigenetic regulators, AOF2 (also known as KDM1 or LSD1), AOF1, MECP1-p66 and MECP2. Silencing AOF2 also caused DNMT1 deficiency and further enhanced global demethylation during somatic cell reprogramming (SCR) of hHFCs. Re-supplementing AOF2 in iPS cells disrupted such global demethylation and induced cell differentiation. Given that both hES and iPS cells highly express mir-302, our findings suggest a novel link between zygotic reprogramming and SCR, providing a regulatory mechanism responsible for global demethylation in both events. As the mechanism of conventional iPS cell induction methods remains largely unknown, understanding this microRNA (miRNA)-mediated SCR mechanism may shed light on the improvements of iPS cell generation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cellular Reprogramming*
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / metabolism
  • DNA Methylation
  • Epigenesis, Genetic
  • Histone Demethylases / metabolism
  • Homeodomain Proteins / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / enzymology
  • Induced Pluripotent Stem Cells / metabolism
  • Mice
  • MicroRNAs / biosynthesis
  • MicroRNAs / physiology*
  • Nanog Homeobox Protein
  • Octamer Transcription Factors / metabolism
  • RNA Interference
  • SOXB1 Transcription Factors / metabolism

Substances

  • Homeodomain Proteins
  • MIRN302A microRNA, human
  • MicroRNAs
  • NANOG protein, human
  • Nanog Homeobox Protein
  • Octamer Transcription Factors
  • SOX2 protein, human
  • SOXB1 Transcription Factors
  • Histone Demethylases
  • KDM1A protein, human
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNMT1 protein, human
  • Dnmt1 protein, mouse