Gene therapy with interleukin-10 receptor and interleukin-12 induces a protective interferon-γ-dependent response against B16F10-Nex2 melanoma

Cancer Gene Ther. 2011 Feb;18(2):110-22. doi: 10.1038/cgt.2010.58. Epub 2010 Oct 1.

Abstract

Antitumor immune responses are associated with proinflammatory cytokines, whereas tumor-developing animals generally have increased the production of immunosuppressive cytokines. Here, we show that splenocytes from C57Bl/6 mice resistant to low doses of B16F10-Nex2 melanoma cells produced twofold or higher interferon-γ (IFN-γ)/interleukin-10 (IL-10) ratios, whereas cells from tumor-bearing animals produced predominantly IL-10. IL-10-knockout (IL-10KO) mice were significantly more resistant to B16F10-Nex2 development, producing increased amounts of IL-12 and IFN-γ. To neutralize IL-10 in vivo, aiming at cancer therapy, recombinant eukaryotic plasmid expressing the soluble extracellular region of the murine IL-10 receptor α-chain was constructed (pcDNA3-sIL-10R). Plasmid-treated melanoma-challenged animals showed extended survival time, the protective response was IFN-γ dependent and enhanced by co-immunization with a plasmid expressing IL-12. Dendritic cells (DCs) from IL-10KO mice, primed with B16F10-Nex2 antigens (TAg), secreted increased amounts of T-helper 1-type cytokines and increased the expression of surface activation markers. Vaccination of C57Bl/6 mice with TAg-activated IL-10KO DCs, as well as with TAg-primed DCs from C57Bl/6 mice transfected with pcDNA3-sIL10R plasmid, significantly increased animal survival. In conclusion, an IFN-γ-dependent protective response was induced against B16F10-Nex2 cells by neutralization of IL-10 with pcDNA3-sIL10R plasmid. This effect was enhanced by association with IL-12 gene therapy (80% protection), and could be mediated by TAg-primed DCs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Dendritic Cells / immunology
  • Genetic Therapy / methods*
  • Humans
  • Immunotherapy, Adoptive / methods*
  • Interferon-gamma / immunology*
  • Interleukin-12 / biosynthesis
  • Interleukin-12 / genetics*
  • Interleukin-12 / immunology
  • Male
  • Melanoma, Experimental / genetics
  • Melanoma, Experimental / immunology
  • Melanoma, Experimental / therapy*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Plasmids / genetics
  • Receptors, Interleukin-10 / biosynthesis
  • Receptors, Interleukin-10 / genetics*
  • Receptors, Interleukin-10 / immunology
  • Transfection

Substances

  • Receptors, Interleukin-10
  • Interleukin-12
  • Interferon-gamma