Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer

Neoplasia. 2010 Oct;12(10):826-36. doi: 10.1593/neo.10586.

Abstract

Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (Pten(P-/-)) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3'-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of Pten(P-/-) mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • 3-Phosphoinositide-Dependent Protein Kinases
  • Animals
  • Apoptosis / drug effects*
  • Blotting, Western
  • Cattle
  • Docosahexaenoic Acids / pharmacology*
  • Humans
  • Immunoenzyme Techniques
  • Male
  • Mice
  • Mice, Knockout
  • Neoplasms, Hormone-Dependent / drug therapy
  • Neoplasms, Hormone-Dependent / metabolism
  • Neoplasms, Hormone-Dependent / pathology
  • PTEN Phosphohydrolase / physiology
  • Phosphorylation / drug effects
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology*
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Messenger / genetics
  • RNA, Small Interfering / genetics
  • Reverse Transcriptase Polymerase Chain Reaction
  • Serum Albumin, Bovine / metabolism
  • Signal Transduction / drug effects
  • Survival Rate
  • Syndecan-1 / antagonists & inhibitors
  • Syndecan-1 / genetics
  • Syndecan-1 / metabolism*
  • Tumor Cells, Cultured
  • bcl-Associated Death Protein / genetics
  • bcl-Associated Death Protein / metabolism*

Substances

  • RNA, Messenger
  • RNA, Small Interfering
  • Syndecan-1
  • bcl-Associated Death Protein
  • Docosahexaenoic Acids
  • Serum Albumin, Bovine
  • 3-Phosphoinositide-Dependent Protein Kinases
  • PDPK1 protein, human
  • Pdpk1 protein, mouse
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • Pten protein, mouse