Novel application of structural equation modeling to correlation structure analysis of CpG island methylation in colorectal cancer

Am J Pathol. 2010 Dec;177(6):2731-40. doi: 10.2353/ajpath.2010.100361. Epub 2010 Oct 29.

Abstract

The CpG island methylator phenotype (CIMP-high, CIMP1) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent evidence suggests the presence of KRAS mutation-associated CIMP subtype (CIMP-low, CIMP2). We used cluster analysis, principal component analysis (PCA), and structural equation modeling (SEM), a novel strategy, to decipher the correlation structure of CpG island hypermethylation. Using a database of 861 colon and rectal cancers, DNA methylation at 16 CpG islands [CACNA1G, CDKN2A (p16/ink4a), CHFR, CRABP1, HIC1, IGF2, IGFBP3, MGMT, MINT-1, MINT-31, MLH1, NEUROG1, p14 (CDKN2A/arf), RUNX3, SOCS1, and WRN] was quantified by real-time PCR. Tumors were categorized into three groups: Group 1 with wild-type KRAS/BRAF (N = 440); Group 2 with mutant KRAS and wild-type BRAF (N = 308); and Group 3 with wild-type KRAS and mutant BRAF (N = 107). Tumors with mutant KRAS/BRAF (N = 6) were excluded. In unsupervised hierarchical clustering analysis, all but six markers (CACNA1G, IGF2, RUNX3, MGMT, MINT-1, and SOCS1) were differentially clustered with CIMP-high and CIMP-low according to KRAS and BRAF status. In SEM, the correlation structures between CIMP, locus-specific CpG island methylation, and MSI differed according to KRAS and BRAF status, which was consistent with PCA results. In conclusion, KRAS and BRAF mutations appear to differentially influence correlation structure of CpG island methylation. Our novel data suggest two distinct perturbations, resulting in differential locus-specific propensity of CpG methylation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Carcinoma / genetics*
  • Colorectal Neoplasms / genetics*
  • CpG Islands* / genetics
  • DNA Methylation* / physiology
  • Female
  • Genetic Markers / genetics
  • Genetic Testing
  • Humans
  • Male
  • Microsatellite Instability
  • Middle Aged
  • Models, Theoretical
  • Phenotype
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins p21(ras)
  • Quantitative Structure-Activity Relationship*
  • ras Proteins / genetics

Substances

  • Genetic Markers
  • KRAS protein, human
  • Proto-Oncogene Proteins
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Proto-Oncogene Proteins p21(ras)
  • ras Proteins