Interferon-β inhibits toll-like receptor 9 processing in multiple sclerosis

Ann Neurol. 2010 Dec;68(6):899-906. doi: 10.1002/ana.22136.

Abstract

Objective: Viral infections have been implicated in the pathogenesis of multiple sclerosis (MS). Plasmacytoid dendritic cells (pDCs) are present in peripheral blood, cerebrospinal fluid, and brain lesions of MS patients. pDCs sense viral DNA via Toll-like receptor 9 (TLR9), which has to be cleaved from the N-terminal to become functional (TLR9 processing). pDCs activated with TLR9 agonists promote T-helper type 1 (Th1)/T-helper type 17 (Th17) responses. In the animal model of MS, TLR9 agonists can induce disease. We hypothesized that pDCs are inhibited by disease-modifying therapy such as interferon (IFN)-β, consequently decreasing the frequency of MS attacks.

Methods: We separated pDCs from healthy subjects and patients diagnosed with relapsing-remitting MS and clinically isolated syndrome. Cytokine secretion by pDCs activated with TLR9 agonists was measured by enzyme-linked immunosorbent assay and multianalyte profiling. TLR9 gene and protein expression was studied by DNA microarrays and western blot.

Results: In untreated patients, pDCs activated with TLR9 agonists produced increased levels of IFN-α, a Th1-promoting cytokine, as compared to healthy subjects. In IFN-β-treated patients, activated pDCs had decreased ability to produce both IFN-α and the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α as compared to untreated patients. pDCs separated from IFN-β-treated patients had significantly reduced levels of the processed TLR9 protein but normal levels of the full-length TLR9 protein and TLR9 gene expression as compared to untreated patients.

Interpretation: This finding represents a novel immunomodulatory mechanism of IFN-β: inhibition of TLR9 processing. This results in decreased activation of pDCs by viral pathogens and, thus, may affect the frequency of MS exacerbations.

Publication types

  • Multicenter Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Cells, Cultured
  • Dendritic Cells / drug effects*
  • Dendritic Cells / virology
  • Enzyme-Linked Immunosorbent Assay / methods
  • Female
  • Gene Expression Profiling / methods
  • Gene Expression Regulation / drug effects*
  • Humans
  • Immunologic Factors / pharmacology*
  • Interferon Regulatory Factor-7 / genetics
  • Interferon Regulatory Factor-7 / metabolism
  • Interferon-beta / metabolism
  • Interferon-beta / pharmacology*
  • Interferon-beta / therapeutic use
  • Interleukin-6 / metabolism
  • Male
  • Middle Aged
  • Multiple Sclerosis / blood*
  • Multiple Sclerosis / drug therapy
  • Oligonucleotide Array Sequence Analysis / methods
  • Toll-Like Receptor 9 / agonists
  • Toll-Like Receptor 9 / genetics
  • Toll-Like Receptor 9 / metabolism*
  • Tumor Necrosis Factor-alpha / metabolism
  • Young Adult

Substances

  • IRF7 protein, human
  • Immunologic Factors
  • Interferon Regulatory Factor-7
  • Interleukin-6
  • TLR9 protein, human
  • Toll-Like Receptor 9
  • Tumor Necrosis Factor-alpha
  • Interferon-beta