A population-based study of polymorphisms in genes related to sex hormones and abdominal aortic aneurysm

Eur J Hum Genet. 2011 Mar;19(3):363-6. doi: 10.1038/ejhg.2010.182. Epub 2010 Dec 1.

Abstract

Male gender and family history are risk factors for abdominal aortic aneurysm (AAA). We hypothesized that genes involved in sex hormones might be important in AAA. We investigated the association of aortic diameter with single-nucleotide polymorphisms (SNPs) in genes determining circulating sex hormones and their action. We genotyped 74 tagging SNPs across four genes (steroid 5α reductase, subfamily A, polypeptide 1 (SRD5A1), cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1), androgen receptor (AR) and estrogen receptor 2 (ESR2)) related to sex hormone production and action in 1711 men, 640 of whom had an AAA. One genotype was also assessed in an independent cohort of 782 men, of whom 513 had large AAAs. Associations were assessed adjusting for other risk factors for AAA. One SNP in CYP19A1 was strongly associated with aortic diameter. Subjects who had the rare homozygote genotype (TT) for CYP19A1g.49412370C>T (SNP ID rs1961177), had an increased aortic diameter (coefficient 5.058, SE 1.394, P=0.0003, under a recessive model). This SNP was not associated with aortic diameter in an independent cohort, which included patients with larger AAAs. Our findings do not support an important role of genetic polymorphisms in genes determining sex hormones in aortic dilatation in men. The association of one SNP in CYPA9A1 with small but not large AAA may suggest differences between AAA formation and progression. This SNP warrants further investigation in another large population, including patients with small AAAs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Aortic Aneurysm, Abdominal / genetics*
  • Cohort Studies
  • Databases, Genetic
  • Genetic Predisposition to Disease
  • Genetics, Population*
  • Genotype
  • Gonadal Steroid Hormones / analysis*
  • Humans
  • Male
  • New Zealand
  • Polymorphism, Single Nucleotide*
  • Risk Factors

Substances

  • Gonadal Steroid Hormones