Gene expression and mutation assessment provide clues of genetic and epigenetic mechanisms in liver tumors of oxazepam-exposed mice

Vet Pathol. 2011 Jul;48(4):875-84. doi: 10.1177/0300985810390019. Epub 2010 Dec 7.

Abstract

Liver tumors from a previous National Toxicology Program study were examined using global gene expression and mutation analysis to define the mechanisms of carcinogenesis in mice exposed to oxazepam. Five hepatocellular adenomas and 5 hepatocellular carcinomas from male B6C3F1 mice exposed to 5000 ppm oxazepam and 6 histologically normal liver samples from control animals were examined. One of the major findings in the study was upregulation of the Wnt/β-catenin signaling pathway. Genes that activate β-catenin, such as Sox4, were upregulated, whereas genes that inhibit Wnt signaling, such as APC and Crebbp, were downregulated. In addition, liver tumors from oxazepam-exposed mice displayed β-catenin mutations and increased protein expression of glutamine synthetase, a downstream target in the Wnt signaling pathway. Another important finding in this study was the altered expression of oxidative stress-related genes, specifically increased expression of cytochrome p450 genes, including Cyp1a2 and Cyp2b10, and decreased expression of genes that protect against oxidative stress, such as Sod2 and Cat. Increased oxidative stress was confirmed by measuring isoprostane expression using mass spectrometry. Furthermore, global gene expression identified altered expression of genes that are associated with epigenetic mechanisms of cancer. There was decreased expression of genes that are hypermethylated in human liver cancer, including tumor suppressors APC and Pten. Oxazepam-induced tumors also exhibited decreased expression of genes involved in DNA methylation (Crebbp, Dnmt3b) and histone modification (Sirt1). These data suggest that formation of hepatocellular adenomas and carcinomas in oxazepam-exposed mice involves alteration of the Wnt signaling pathway, oxidative stress, and potential epigenetic alterations.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Carcinogens / toxicity*
  • Epigenesis, Genetic / physiology*
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Genome
  • Liver Neoplasms, Experimental / chemically induced*
  • Liver Neoplasms, Experimental / genetics
  • Liver Neoplasms, Experimental / pathology
  • Male
  • Mice
  • Mice, Inbred Strains
  • Mutation
  • Oxazepam / toxicity*
  • Oxidative Stress
  • Polymerase Chain Reaction / methods
  • Protein Array Analysis
  • Reproducibility of Results
  • Signal Transduction
  • Wnt Proteins / genetics
  • Wnt Proteins / metabolism

Substances

  • Carcinogens
  • Wnt Proteins
  • Oxazepam