Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade

Ann Rheum Dis. 2011 Apr;70(4):660-7. doi: 10.1136/ard.2010.139196. Epub 2010 Dec 27.

Abstract

Objective: To investigate the interplay between IL-32 and tumour necrosis factor alpha (TNFα) during the chronic inflammation of rheumatoid arthritis (RA) and to assess whether anti-TNFα treatment of RA patients modulates synovial IL-32 expression.

Methods: Induction of IL-32γ by Pam3Cys, lipopolysaccharide, IL-1β or TNFα was investigated in human fibroblast-like synoviocytes (FLS). Stimulation of TNFα production by IL-32γ was studied by adenoviral overexpression of IL-32γ (AdIL-32γ) and lipopolysaccharide stimulation of THP1 cells. Silencing of endogenous IL-32 was employed to study cytokine regulation in FLS. AdIL-32γ followed by TNFα stimulation was performed in FLS to investigate cytokine induction. Immunohistochemistry was applied to study IL-32 expression in synovial biopsies from RA patients.

Results: TNFα potently induced IL-32γ expression in FLS. Increased TNFα, IL-1β, IL-6 and CXCL8 production was observed after IL-32γ overexpression and lipopolysaccharide stimulation of THP1 cells. TNFα stimulation of FLS after silencing IL-32γ resulted in diminished IL-6 and CXCL8 production, whereas IL-32γ overexpression resulted in enhanced IL-6 and CXCL8 levels. Remarkably, the mechanism through which IL-32γ overexpression induced TNFα, IL-1β and CXCL8 was by counteracting messenger RNA decay. Importantly, treatment of RA patients with anti-TNFα resulted in significant reduction of IL-32 protein in synovial tissue.

Conclusions: TNFα is a potent inducer of endogenous IL-32 expression and IL-32 itself contributes to prolonged TNFα production, thus inducing an important auto-inflammatory loop. Treatment of RA patients with anti-TNFα antibodies diminished IL-32 expression in synovial tissue. The potent anti-inflammatory effect of TNFα blockade in RA patients may be partly due to the reduction of synovial IL-32 expression.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antirheumatic Agents / pharmacology
  • Arthritis, Rheumatoid / drug therapy
  • Arthritis, Rheumatoid / metabolism*
  • Arthritis, Rheumatoid / pathology
  • Cells, Cultured
  • Fibroblasts / metabolism
  • Gene Silencing
  • Humans
  • Inflammation Mediators / metabolism
  • Interleukin-1beta / biosynthesis
  • Interleukin-1beta / genetics
  • Interleukin-6 / biosynthesis
  • Interleukin-8 / biosynthesis
  • Interleukin-8 / genetics
  • Interleukins / biosynthesis*
  • Lipopolysaccharides / pharmacology
  • RNA, Messenger / genetics
  • Synovial Membrane / drug effects
  • Synovial Membrane / metabolism*
  • Synovial Membrane / pathology
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / physiology*

Substances

  • Antirheumatic Agents
  • CXCL8 protein, human
  • IL32 protein, human
  • IL6 protein, human
  • Inflammation Mediators
  • Interleukin-1beta
  • Interleukin-6
  • Interleukin-8
  • Interleukins
  • Lipopolysaccharides
  • RNA, Messenger
  • Tumor Necrosis Factor-alpha