MTHFR polymorphisms and cognitive ageing in the ninth decade: the Lothian Birth Cohort 1921

Genes Brain Behav. 2011 Apr;10(3):354-64. doi: 10.1111/j.1601-183X.2010.00675.x. Epub 2011 Jan 24.

Abstract

Low blood levels of B vitamins have been implicated in age-associated cognitive impairment. The present study investigated the association between genetic variation in folate metabolism and age-related cognitive decline in the ninth decade of life. Both the 677C>T (rs1801133) polymorphism and the scarcely studied 1298A>C (rs1801131) polymorphism of the MTHFR gene were assessed in relation to cognitive change over 8 years in older community-dwelling individuals. MTHFR genotype was determined in 476 participants of the Lothian Birth Cohort 1921, whose intelligence was measured in childhood in the Scottish Mental Survey of 1932. Cognitive performance on the domains of verbal memory, reasoning and verbal fluency was assessed at mean age of 79 (n = 476) and again at mean ages of 83 (n = 275) and 87 (n = 180). Using linear mixed models, the MTHFR 677C>T and 1298A>C variants were not associated with the rate of cognitive change between 79 and 87 years, neither in the total sample, nor in a subsample of individuals with erythrocyte folate levels below the median. APOE E4 allele carrier status did not interact with MTHFR genotype in affecting change in cognitive performance over 8 years. No significant combined effect of the two polymorphisms was found. In conclusion, MTHFR 677C>T and 1298A>C polymorphisms were not associated with individual change in cognitive functioning in the ninth decade of life. Although polymorphisms in the MTHFR gene may cause disturbances in folate metabolism, they do not appear to be accompanied by changes in cognitive functioning in old age.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Aging / genetics*
  • Aging / physiology
  • Cognition Disorders / enzymology*
  • Cognition Disorders / genetics*
  • Cognition Disorders / physiopathology
  • Cohort Studies
  • Female
  • Gene Frequency
  • Genotype
  • Humans
  • Male
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics*
  • Methylenetetrahydrofolate Reductase (NADPH2) / physiology
  • Neuropsychological Tests
  • Scotland

Substances

  • Methylenetetrahydrofolate Reductase (NADPH2)