Two TPX2-dependent switches control the activity of Aurora A

PLoS One. 2011 Feb 9;6(2):e16757. doi: 10.1371/journal.pone.0016757.

Abstract

Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a "closed" state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to "open" the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an "open" conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a "closed" movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / metabolism
  • Aurora Kinases
  • Binding Sites
  • Cell Cycle Proteins / metabolism*
  • Enzyme Activation
  • Humans
  • Microtubule-Associated Proteins / metabolism*
  • Molecular Dynamics Simulation*
  • Mutation
  • Nuclear Proteins / metabolism*
  • Protein Conformation
  • Protein Serine-Threonine Kinases / chemistry
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*

Substances

  • Cell Cycle Proteins
  • Microtubule-Associated Proteins
  • Nuclear Proteins
  • TPX2 protein, human
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Aurora Kinases
  • Protein Serine-Threonine Kinases