PTEN's regulation of VEGF and VEGFR1 expression and its clinical significance in myeloid leukemia

Med Oncol. 2012 Jun;29(2):1084-92. doi: 10.1007/s12032-011-9867-2. Epub 2011 Mar 1.

Abstract

Phosphatase and tensin homolog (PTEN) acts as a novel tumor suppressor gene. PTEN protein plays an important role in regulating proliferation, apoptosis, invasion, and migration of many cancer cells. PTEN also modulates angiogenesis mediated by vascular endothelial growth factor (VEGF) via down-regulating PI3K/Akt pathway in many solid tumors. However, the effects of PTEN on VEGF and VEGFR1 (FLT1)-mediated angiogenesis, migration, invasion of leukemia cells, and its clinical significance are still unknown in myeloid leukemia. Therefore, we investigated the effect of PTEN on PI3K/Akt and VEGF/FLT1 pathways by transfecting wild-type PTEN gene to induce high expression of wild-type PTEN gene and protein in chronic myelogenous leukemia cell line K562 cells. We also observed the correlation between the expression levels of PTEN and VEGF/FLT1 and its clinical significance in myeloid leukemia patients. We found that the expression reconstitution of wild-type PTEN had significant effect on inhibiting proliferation, migration, and invasion abilities of K562 cells via down-regulation of Akt phosphorylation and inhibition of VEGF/FLT1 expression. In myeloid leukemia patients, a negative correlation was found between the expression level of PTEN mRNA and that of VEGF and FLT1 mRNA. Down-regulation of PTEN expression accompanied by up-regulation of VEGF and FLT1 mRNA indicated a higher tendency of extramedullary disease in acute myeloid leukemia patients. In conclusion, PTEN could modulate the function of VEGF/VEGFR signaling pathway down-regulation of Akt phosphorylation and that PTEN would be a candidate target to be addressed for inhibiting angiogenesis along with the treatment of myeloid leukemia.

MeSH terms

  • Animals
  • Apoptosis
  • Blotting, Western
  • Case-Control Studies
  • Cell Adhesion
  • Cell Cycle
  • Cell Movement
  • Cell Proliferation
  • Chickens
  • Chorioallantoic Membrane / metabolism
  • Chorioallantoic Membrane / pathology
  • Enzyme-Linked Immunosorbent Assay
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Immunoenzyme Techniques
  • K562 Cells
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / genetics*
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / metabolism
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive / pathology
  • Leukemia, Myeloid, Acute / genetics*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology
  • PTEN Phosphohydrolase / genetics*
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Vascular Endothelial Growth Factor A / genetics*
  • Vascular Endothelial Growth Factor A / metabolism
  • Vascular Endothelial Growth Factor Receptor-1 / genetics*
  • Vascular Endothelial Growth Factor Receptor-1 / metabolism

Substances

  • RNA, Messenger
  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • Phosphatidylinositol 3-Kinases
  • Vascular Endothelial Growth Factor Receptor-1
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • PTEN protein, human