Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma

Clin Cancer Res. 2011 Apr 15;17(8):2373-84. doi: 10.1158/1078-0432.CCR-10-2289. Epub 2011 Mar 3.

Abstract

Purpose: This study evaluates the effect of dual PI3K and mTOR inhibition using NVP-BEZ235 in preclinical models of ovarian cancer as a potential novel therapeutic strategy.

Experimental design: Inhibition of PI3K/Akt/mTOR signaling by NVP-BEZ235 was demonstrated by immunoblotting. The effect on cell proliferation was assessed in 18 ovarian cancer cell lines, including four pairs of syngeneic cisplatin-sensitive and cisplatin-resistant cell lines. The in vivo effects of NVP-BEZ235 on established tumor growth were evaluated using an immunocompetent, transgenic murine ovarian cancer model (LSL-K-ras(G12D/+)Pten(loxP/loxP)).

Results: NVP-BEZ235 decreased cell proliferation in all ovarian cancer cell lines assayed and sensitized cisplatin-resistant cells to the cytotoxic effects of cisplatin. Cell lines with PI3K-activating mutations or Pten deletions were significantly more sensitive to the effect of NVP-BEZ235 than cell lines without these mutations (P < 0.05). A statistically significant correlation was found between relative levels of p4E-BP1 and the IC(50) for NVP-BEZ235. In LSL-K-ras(G12D/+)Pten(loxP/loxP) mice with established intraperitoneal tumor disease, oral administration of NVP-BEZ235 decreased pAkt, p4E-BP1 and Ki67 in tumor tissue, and resulted in significantly longer survival compared to control animals (P < 0.05). NVP-BEZ235 also induced cell cycle arrest, caspase 3 activity, and reduced cell migration.

Conclusions: Targeting PI3K and mTOR simultaneously using NVP-BEZ235 effectively inhibits ovarian cancer cell growth even in the presence of platinum resistance and prolongs survival of mice with intra-abdominal ovarian tumor disease. We propose that dual PI3K and mTOR inhibition using NVP-BEZ235 may be an effective novel therapeutic approach in patients with ovarian cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Caspase 3 / metabolism
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cisplatin / pharmacology
  • Disease Models, Animal
  • Drug Resistance, Neoplasm / drug effects
  • Enzyme Activation / drug effects
  • Female
  • Humans
  • Imidazoles / therapeutic use*
  • Immunoblotting
  • Mice
  • Mice, Transgenic
  • Mutation
  • Ovarian Neoplasms / drug therapy*
  • Ovarian Neoplasms / metabolism
  • Ovarian Neoplasms / pathology
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors*
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / metabolism
  • Quinolines / therapeutic use*
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Antineoplastic Agents
  • Imidazoles
  • Phosphoinositide-3 Kinase Inhibitors
  • Quinolines
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • PTEN Phosphohydrolase
  • Caspase 3
  • Cisplatin
  • dactolisib