Synergistic interactions between PDE4B and GSK-3: DISC1 mutant mice

Neuropharmacology. 2012 Mar;62(3):1252-62. doi: 10.1016/j.neuropharm.2011.02.020. Epub 2011 Mar 2.

Abstract

Disrupted-In-Schizophrenia-1 (DISC1) is a strong genetic risk factor associated with psychiatric disorders. Two distinct mutations in the second exon of the DISC1 gene (Q31L and L100P) lead to either depression- or schizophrenia-like behavior in mice. Both phosphodiesterase-4B (PDE4B) and glycogen synthase kinase-3 (GSK-3) have common binding sites on N-terminal region of DISC1 and are implicated into etiology of schizophrenia and depression. It is not known if PDE4B and GSK-3 could converge signals in the cell via DISC1 at the same time. The purpose of the present study was to assess whether rolipram (PDE4 inhibitor) might synergize with TDZD-8 (GSK-3 blocker) to produce antipsychotic effects at low doses on the DISC1-L100P genetic model. Indeed, combined treatment of DISC1-L100P mice with rolipram (0.1 mg/kg) and TDZD-8 (2.5 mg/kg) in sub-threshold doses corrected their Pre-Pulse Inhibition (PPI) deficit and hyperactivity, without any side effects at these doses. We have suggested that rolipram-induced increase of cAMP level might influence GSK-3 function and, hence the efficacy of TDZD-8. Our second goal was to estimate how DISC1-Q31L with reduced PDE4B activity, and therefore mimicking rolipram-induced conditions, could alter pharmacological response to TDZD-8, GSK-3 activity and its interaction with DISC1. DISC1-Q31L mutants showed increased sensitivity to GSK-3 inhibitor compare to DISC1-L100P mice. TDZD-8 (2.5 mg/kg) was able to correct PPI deficit, reduce immobility in the forced swim test (FST) and increased social motivation/novelty. In parallel, biochemical analysis revealed significantly reduced binding of GSK-3 to the mutated DISC1-Q31L and increased enzymatic activity of GSK-3. Taken together, genetic variations in DISC1 influence formation of biochemical complex with PDE4 and GSK-3 and strength the possibility of synergistic interactions between these proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cyclic Nucleotide Phosphodiesterases, Type 4 / genetics
  • Cyclic Nucleotide Phosphodiesterases, Type 4 / metabolism*
  • Genetic Variation
  • Glycogen Synthase Kinase 3 / antagonists & inhibitors
  • Glycogen Synthase Kinase 3 / genetics
  • Glycogen Synthase Kinase 3 / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • Motor Activity
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / metabolism*
  • Phosphodiesterase 4 Inhibitors / pharmacology
  • Protein Binding
  • Rolipram / pharmacology
  • Thiadiazoles / pharmacology

Substances

  • 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione
  • Disc1 protein, mouse
  • Nerve Tissue Proteins
  • Phosphodiesterase 4 Inhibitors
  • Thiadiazoles
  • Glycogen Synthase Kinase 3
  • Cyclic Nucleotide Phosphodiesterases, Type 4
  • PDE4B protein, mouse
  • Rolipram