Regulation of mitochondrial metabolism: yet another facet in the biology of the oncoprotein Bcl-2

Biochem J. 2011 May 1;435(3):545-51. doi: 10.1042/BJ20101996.

Abstract

The Bcl-2 (Bcl is B-cell lymphocytic-leukaemia proto-oncogene) family comprises two groups of proteins with distinct functional biology in cell-fate signalling. Bcl-2 protein was the first member to be discovered and associated with drug resistance in human lymphomas. Since then a host of other proteins such as Bcl-xL, Bcl-2A1 and Mcl-1 with similar anti-apoptotic functions have been identified. In contrast, the pro-apoptotic Bcl-2 proteins contain prototypic effector proteins such as Bax and Bak, and the BH3 (Bcl-2 homology)-only proteins comprising Bak, Bid, Bim, Puma and Noxa. A complex interplay between the association of pro-apoptotic and anti-apoptotic proteins with each other determines the sensitivity of cancer cells to drug-induced apoptosis. The canonical functional of Bcl-2 in terms of apoptosis inhibition is its ability to prevent mitochondrial permeabilization via inhibiting the translocation and oligomerization of pro-apoptotic proteins such as Bax; however, more recent evidence points to a novel mechanism of the anti-apoptotic activity of Bcl-2. Overexpression of Bcl-2 increases mitochondrial oxygen consumption and in doing so generates a slight pro-oxidant intracellular milieu, which promotes genomic instability and blocks death signalling. However, in the wake of overt oxidative stress, Bcl-2 regulates cellular redox status thereby preventing excessive build-up of ROS (reactive oxygen species), which is detrimental to cells and tissues. Taken together, the canonical and non-canonical activities of Bcl-2 imply a critical involvement of this protein in the processes of tumour initiation and progression. In the present paper we review these functionally distinct outcomes of Bcl-2 expression with implications for the chemotherapeutic management of cancers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Gene Expression Regulation, Neoplastic / physiology
  • Humans
  • Lymphoma / drug therapy
  • Lymphoma / genetics
  • Lymphoma / metabolism
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism*

Substances

  • MAS1 protein, human
  • Proto-Oncogene Mas
  • Proto-Oncogene Proteins c-bcl-2