Prolactin in breast and prostate cancer: molecular and genetic perspectives

Discov Med. 2011 Apr;11(59):315-24.

Abstract

Prostate and breast cancers affect millions of men and women, respectively. Advanced forms of the disease, which can no longer be controlled by hormonal disruption or chemotherapy, have very limited treatment options. Consequently, there is a major benefit to identify new targets for therapy in both types of cancer. The prolactin (PRL) signaling cascade, by virtue of its importance to the pathology of both diseases, has emerged as a potential treatment target. To date, several methods for antagonizing the PRL receptor (PRLR) and its signaling pathways have been developed which include protein-based and small molecule antagonists. However, a better understanding of the genetic and molecular characteristics of the PRL cascade is needed for the successful therapeutic application of antagonists. At the level of genetics, it is necessary to determine the functional significance of non-synonymous single nucleotide polymorphisms of the PRLR and their association with disease prevalence and severity. At the molecular level, a comprehensive knowledge of interactions of the PRL signaling pathway with other oncogenic molecules is warranted so as to identify beneficial combinatorial strategies. This review discusses multiple features of the PRL signaling cascade and how they can be exploited in the search for effective therapies for patients with breast and prostate cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Breast Neoplasms / genetics*
  • Female
  • Humans
  • Male
  • Prolactin / genetics*
  • Prolactin / metabolism
  • Prostatic Neoplasms / genetics*
  • Receptors, Prolactin / genetics
  • Receptors, Prolactin / metabolism

Substances

  • Receptors, Prolactin
  • Prolactin