Congenital neutropenia: diagnosis, molecular bases and patient management

Orphanet J Rare Dis. 2011 May 19:6:26. doi: 10.1186/1750-1172-6-26.

Abstract

The term congenital neutropenia encompasses a family of neutropenic disorders, both permanent and intermittent, severe (<0.5 G/l) or mild (between 0.5-1.5 G/l), which may also affect other organ systems such as the pancreas, central nervous system, heart, muscle and skin. Neutropenia can lead to life-threatening pyogenic infections, acute gingivostomatitis and chronic parodontal disease, and each successive infection may leave permanent sequelae. The risk of infection is roughly inversely proportional to the circulating polymorphonuclear neutrophil count and is particularly high at counts below 0.2 G/l.When neutropenia is detected, an attempt should be made to establish the etiology, distinguishing between acquired forms (the most frequent, including post viral neutropenia and auto immune neutropenia) and congenital forms that may either be isolated or part of a complex genetic disease.Except for ethnic neutropenia, which is a frequent but mild congenital form, probably with polygenic inheritance, all other forms of congenital neutropenia are extremely rare and have monogenic inheritance, which may be X-linked or autosomal, recessive or dominant.About half the forms of congenital neutropenia with no extra-hematopoietic manifestations and normal adaptive immunity are due to neutrophil elastase (ELANE) mutations. Some patients have severe permanent neutropenia and frequent infections early in life, while others have mild intermittent neutropenia.Congenital neutropenia may also be associated with a wide range of organ dysfunctions, as for example in Shwachman-Diamond syndrome (associated with pancreatic insufficiency) and glycogen storage disease type Ib (associated with a glycogen storage syndrome). So far, the molecular bases of 12 neutropenic disorders have been identified.Treatment of severe chronic neutropenia should focus on prevention of infections. It includes antimicrobial prophylaxis, generally with trimethoprim-sulfamethoxazole, and also granulocyte-colony-stimulating factor (G-CSF). G-CSF has considerably improved these patients' outlook. It is usually well tolerated, but potential adverse effects include thrombocytopenia, glomerulonephritis, vasculitis and osteoporosis. Long-term treatment with G-CSF, especially at high doses, augments the spontaneous risk of leukemia in patients with congenital neutropenia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anti-Bacterial Agents / therapeutic use
  • Genetic Predisposition to Disease
  • Granulocyte-Macrophage Colony-Stimulating Factor / therapeutic use
  • Humans
  • Neutropenia / congenital*
  • Neutropenia / etiology*
  • Neutropenia / genetics
  • Neutropenia / therapy
  • Risk Factors

Substances

  • Anti-Bacterial Agents
  • Granulocyte-Macrophage Colony-Stimulating Factor