The C-terminal region of Bfl-1 sensitizes non-small cell lung cancer to gemcitabine-induced apoptosis by suppressing NF-κB activity and down-regulating Bfl-1

Mol Cancer. 2011 Aug 16:10:98. doi: 10.1186/1476-4598-10-98.

Abstract

Gemcitabine is used to treat several cancers including lung cancer. However, tumor cells often escape gemcitabine-induced cell death via various mechanisms, which include modulating bcl-2 family members and NF-κB activation. We previously reported that the C-terminal region of Bfl-1 fused with GFP (BC) is sufficient to induce apoptosis in 293T cells. In the present study, we investigated the anti-tumor effect of combined BC gene therapy and gemcitabine chemotherapy in vitro and in vivo using non-small cell lung cancer cell lines and a xenograft model. Cell lines were resistant to low dose gemcitabine (4-40 ng/ml), which induced NF-κB activation and concomitant up-regulation of Bfl-1 (an NF-κB-regulated anti-apoptotic protein). BC induced the apoptosis of A549 and H157 cells with caspase-3 activation. Furthermore, co-treatment with BC and low dose gemcitabine synergistically and efficiently induced mitochondria-mediated apoptosis in these cells. When administered alone or with low dose gemcitabine, BC suppressed NF-κB activity, inhibited the nuclear translocation of p65/relA, and down-regulated Bfl-1 expression. Furthermore, direct suppression of Bfl-1 by RNA interference sensitized cells to gemcitabine-induced cell death, suggesting that Bfl-1 importantly regulates lung cancer cell sensitivity to gemcitabine. BC and gemcitabine co-treatment also showed a strong anti-tumor effect in a nude mouse/A549 xenograft model. These results suggest that lung cancer cells become resistant to gemcitabine via NF-κB activation and the subsequent overexpression of Bfl-1, and that BC, which has both pro-apoptotic and NF-κB inhibitory effects, could be harnessed as a gene therapy to complement gemcitabine chemotherapy in non-small cell lung cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology
  • Antineoplastic Combined Chemotherapy Protocols / therapeutic use
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Cell Line, Tumor
  • Deoxycytidine / administration & dosage
  • Deoxycytidine / analogs & derivatives
  • Deoxycytidine / pharmacology
  • Down-Regulation / drug effects
  • Down-Regulation / genetics
  • Drug Synergism
  • Gemcitabine
  • Gene Expression Regulation, Neoplastic / drug effects
  • HEK293 Cells
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Mice
  • Mice, Nude
  • Minor Histocompatibility Antigens
  • NF-kappa B / metabolism*
  • Protein Structure, Tertiary / genetics
  • Protein Structure, Tertiary / physiology
  • Proto-Oncogene Proteins c-bcl-2 / administration & dosage
  • Proto-Oncogene Proteins c-bcl-2 / chemistry
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / pharmacology*
  • Xenograft Model Antitumor Assays

Substances

  • BCL2-related protein A1
  • Minor Histocompatibility Antigens
  • NF-kappa B
  • Proto-Oncogene Proteins c-bcl-2
  • Deoxycytidine
  • Gemcitabine