Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7

Biochemistry. 2011 Oct 11;50(40):8674-81. doi: 10.1021/bi200958s. Epub 2011 Sep 13.

Abstract

We previously identified Asp(340) in transmembrane segment 7 (TM7) as a key determinant of substrate affinity in Hxt7, a high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by Hxt7, we performed cysteine-scanning mutagenesis of 21 residues in TM5 of a Cys-less form of Hxt7. Four residues were sensitive to Cys replacement, among which Gln(209) was found to be essential for high-affinity glucose transport activity. The 17 remaining sites were examined further for the accessibility of cysteine to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). Among the Cys mutants, T213C was the only one whose transport activity was completely inhibited by 0.5 mM pCMBS. Moreover, this mutant was protected from pCMBS inhibition by the substrate d-glucose and by 2-deoxy-D-glucose but not by L-glucose, indicating that Thr(213) is situated at or close to a substrate recognition site. The functional role of Thr(213) was further examined with its replacement with each of the other 19 amino acids in wild-type Hxt7. Such replacement generated seven functional transporters with various affinities for glucose. Only three mutants, those with Val, Cys, and Ser at position 213, exhibited high-affinity glucose transport activity. All of these residues possess a side chain length similar to that of Thr, indicating that side chain length at this position is a key determinant of substrate affinity. A working homology model of Hxt7 indicated that Gln(209) and Thr(213) face the central cavity and that Thr(213) is located within van der Waals distance of Asp(340) (TM7).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Biological Transport
  • Glucose / chemistry
  • Glucose / metabolism*
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Monosaccharide Transport Proteins / chemistry*
  • Monosaccharide Transport Proteins / genetics
  • Monosaccharide Transport Proteins / metabolism
  • Mutagenesis, Site-Directed
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae / chemistry
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Sequence Alignment
  • Stereoisomerism
  • Substrate Specificity

Substances

  • HXT7 protein, S cerevisiae
  • Monosaccharide Transport Proteins
  • Saccharomyces cerevisiae Proteins
  • Glucose