NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+

J Neurosci. 2011 Oct 5;31(40):14264-71. doi: 10.1523/JNEUROSCI.2310-11.2011.

Abstract

Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K(+) can stimulate glycolysis by >300% within seconds. The K(+) response was blocked by ouabain, but intracellular engagement of the Na(+)/K(+) ATPase pump with Na(+) was ineffective, suggesting that the canonical feedback regulatory pathway involving the Na(+) pump and ATP depletion is only permissive and that a second mechanism is involved. Because of their predominant K(+) permeability and high expression of the electrogenic Na(+)/HCO(3)(-) cotransporter NBCe1, astrocytes respond to a rise in extracellular K(+) with plasma membrane depolarization and intracellular alkalinization. In the present article, we show that a fast glycolytic response can be elicited independently of K(+) by plasma membrane depolarization or by intracellular alkalinization. The glycolytic response to K(+) was absent in astrocytes from NBCe1 null mice (Slc4a4) and was blocked by functional or pharmacological inhibition of the NBCe1. Hippocampal neurons acquired K(+)-sensitive glycolysis upon heterologous NBCe1 expression. The phenomenon could also be reconstituted in HEK293 cells by coexpression of the NBCe1 and a constitutively open K(+) channel. We conclude that the NBCe1 is a key element in a feedforward mechanism linking excitatory synaptic transmission to fast modulation of glycolysis in astrocytes.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Cells, Cultured
  • Extracellular Space / metabolism*
  • Glycolysis / physiology*
  • HEK293 Cells
  • Humans
  • Male
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Mice, Inbred CBA
  • Mice, Knockout
  • Potassium / metabolism*
  • Sodium-Bicarbonate Symporters / physiology*
  • Time Factors

Substances

  • SLC4A4 protein, human
  • Sodium-Bicarbonate Symporters
  • Potassium